CPR Guideline Chest Compression Depths May Exceed Requirements for Optimal Physiological Response

Olibhéar McAlister1,2, Daniel Guldenring1, Dewar Finlay1, Raymond R Bond1, Hannah Torney1,2, Ben McCartney2, Laura Davis2, Paul Crawford3, Adam Harvey2

1Ulster University, Newtownabbey, UK
2HeartSine Technologies Ltd., Belfast, UK
3Veterinary Anaesthesia Consultancy, Larne, UK

Abstract

The following analyses evaluate the association between chest compression (CC) depth, systolic blood pressure (SBP) and end-tidal carbon dioxide (ETCO\textsubscript{2}) with their target cut-offs during cardiopulmonary resuscitation (CPR).

A twelve-animal porcine study dataset was retrospectively analyzed to assess associations between CC depth, SBP and ETCO\textsubscript{2}. Manual CCs were applied for 7 two-minute episodes, at CC depths between 10mm-55mm. A rolling 15s analysis window was applied to the continuous signals. Mean peak values were calculated for each window. Correlation analysis was applied to assess strength of association. Optimal CC depth to achieve physiological targets was determined via cut-off analysis.

A total of 672 observations for each variable were available for analysis. Pearson correlations (95\% confidence interval; \textit{p}-value) between CC depth and both SBP and ETCO\textsubscript{2} were 0.84 (0.82, 0.86; \textit{p} < 0.001) and 0.75 (0.71, 0.78; \textit{p} < 0.001) respectively. Optimal CC depth cut-off (sensitivity, specificity) to achieve SBP \geq 100mmHg and ETCO\textsubscript{2} \geq 10mmHg was 33 mm (98.29\%, 88.94\%) and 20 mm (95.08\%, 78.30\%) respectively.

A reasonable relationship between CC depth and physiological response was observed. Optimal SBP and ETCO\textsubscript{2} cut-offs were achieved significantly below guideline depths. Furthermore, cut-off analysis suggests a disparity between CC depth and physiological targets.

1. Introduction

Cardiac arrest is a leading cause of premature death worldwide. To increase survival rates early defibrillation and effective cardiopulmonary resuscitation (CPR) are crucial. American Heart Association (AHA) and European Resuscitation Council (ERC) basic life support guidelines consider chest compressions (CCs) at a rate of 100 to 120 CCs min-1 and a depth of 50 to 60 mm to be effective, amongst an adult population [1], [2].

Guideline CC depth between 50 to 60 mm has been proven to marginally increase survival to hospital admission, compared to previous guideline depths of 40 to 50 mm [3], [4]. While associated survival improves with deeper CCs so does the risk of causing injury to the patient [5]. It has been reported that CPR performance is poor for both professional and lay rescuers over several revisions of the basic life support guidelines [6], [7]. The low incidence of CC depth meeting the minimum guideline depth of 50 mm may be due to the target not being suitable for the entire adult population or early onset of fatigue [8], [9].

Research into patient response as an indicator of CPR quality is in its infancy with few physiological endpoints and cut-offs established. Advanced life support guidelines do suggest an alternative indicator of measuring CC quality. Observing a patient ETCO\textsubscript{2} response of < 10 mmHg is associated with mortality and efforts to improve CPR quality should be made. Supporting evidence suggests continuous CCs between 100 and 120 compressions min-1 maintains ideal blood pressure [10]. Friess \textit{et al.} investigated the use of SBP as an indicator of CPR quality and used a physiological cut-off of 100 mmHg [11].

2. Methods

The purpose of this analysis is to determine the optimal CC depth cut-off to achieve ETCO\textsubscript{2} \geq 10 mmHg and SBP \geq 100 mmHg. To this retrospective analysis was conducted on a porcine dataset. The dataset included continuous time-series data for CC depth, ETCO\textsubscript{2} and SBP.

2.1. Study Design
All experiments were performed in accordance with the Home Office Guidance on the Operation of the Animals (Scientific Procedures) Act 1986 (UK).

Twelve (12) adult pigs, aged approximately 9 to 10 weeks and weighing between 30 to 35 kg, were enrolled in the study. Ventricular fibrillation (VF) was induced electrically, and the animals were left untreated for 3 minutes. During the untreated period animals were ventilated at an approximate rate of 12 ventilations min⁻¹.

Each animal had 7 episodes of continuous CCs applied at a rate of 110 compressions min⁻¹. The initial 4 episodes of CPR were applied to achieve an EtCO₂ response of < 15 mmHg. The remaining 3 episodes targeted an EtCO₂ response of ≥ 15 mmHg. There was a rest period of at least 10-seconds between CC episodes to simulate an automatic external defibrillator electrocardiogram analysis period.

2.2. Signal Data

A HeartStart Mrx (Philips, USA) coupled with Q-CPR technology (Laerdal Medical, Norway) was used to capture CC depth data. Depth signal data was captured at a sample frequency of 50 Hz and a resolution of 0.01 mm per least significant bit (LSB).

Physiological signals were captured using a Datex-Ohmeda S3 Anesthesia Monitor (GE Healthcare, USA) using VitalSignsCapture [12]. Side-stream capnograph was used to measure EtCO₂ at a sampling frequency of 25 Hz. Arterial blood pressure (BP) was captured from the carotid artery and sampled at a rate of 100 Hz. Outputs from the anesthesia were recorded in physical units and did not require scaling prior processing.

2.3. Data Processing

An annotation review was conducted on each of the signals, by study personnel, to identify the beginning of each CPR episode. Episodes were segmented into 15-second epochs. An analysis widow was applied to each epoch to determine the amplitude of the signal.

Local minima were identified in the CC depth using a peak detection algorithm. The absolute value of the mean of the local minima within a CC depth epoch represented the mean CC depth for that 15-second period.

Capnograph and BP signals were analyzed by peak envelope. The mean upper envelope in the capnograph and BP signals were taken as the representative values of EtCO₂ and SBP for a given epoch respectively. The mean lower envelope represented the DBP for a given epoch.

Additional processing of the capnograph signal was conducted. A rolling, non-overlapping analysis widow was applied to the signal starting at the point of VF induction. Each window had a fixed duration of 12-seconds which terminated after 180-seconds of signal had been processed. The amplitude of the capnogram was calculated for each analysis window.

2.4. Data Analyses

Data was audited by independent review prior to analysis. R for statistical computing version 3.5.1 was used for all analyses.

Between-subject, within-subject and Pearson correlation analyses were applied to each combination of CC depth, EtCO₂ and SBP [13], [14].

Cutoff analyses were applied to the data to determine the probabilistic CC depth cutoffs for EtCO₂ ≥ 10 mmHg and peak BP ≥ 100 mmHg. Depth cutoffs increased in increments of 1 mm and accuracy, sensitivity, specificity and Youden index were calculated for each CC depth cutoff. Cutoffs which are associated with maximum accuracy and maximum Youden index were reported.

The decay of EtCO₂ post VF induction was characterized by applying a log-log regression model to EtCO₂ and time data.

3. Results

A total of 672 observations (12 animals x 7 episodes x 8 analysis windows) of EtCO₂ and SBP were processed. There were 13 missing observation for CC depth due to the administration of shallow CCs.

There were non-significant, between-subject correlations observed for all combinations of CC depth, EtCO₂ and SBP (Table 1).

Strong within-subject correlations were observed for all combinations of the study endpoints; EtCO₂ and CC depth (0.83), EtCO₂ and SBP (0.86) and SBP and CC depth (0.89). Additionally, lower, yet strong Pearson correlations were observed between all combinations of study endpoints. Further details of all correlation analyses are listed in Table 1.

The maximum accuracy cut-off for CC depth to predict EtCO₂ ≥ 10 mmHg was 20 mm. This provided an accuracy of 89.68% (sensitivity = 0.95; specificity = 0.78; Youden index = 0.73). The optimal depth cut-off to classify SBP ≥ 100 mmHg was 33 mm with an accuracy of 92.26% (sensitivity = 0.98; specificity = 0.89; Youden Index = 0.87).

Adjusting this analysis in favor of maximum Youden index the optimal cut-off for EtCO₂ ≥ 10 mmHg increases to 21 mm with an accuracy of 87.86% (sensitivity = 0.90; specificity = 0.84; Youden index = 0.74). There was no change to the depth-cut-off after adjusting for maximum Youden index.

The deterioration of EtCO₂ post VF induction resembled characteristics indicative of exponential decay. Data obtained for each 12-second analysis window during the untreated duration of VF were not considered to be normally distributed (Figure 1). The median value for each
hen VF is induced
- ax, bleeding into the pericardial sac, bruised
in the
-

 responded instantaneously to changes in applied CC depth.

does not reflect sudden changes in applied CC depth.

apparent that
response is monitored during CPR instead of

considered safe for use on the human population? Can
this treatment. At what point are the CC depth targets
required. This study demonstrated depths greater than 45
mm were acceptable for 11 of the 12 enrolled animals,
however, one displayed irreversible damage as a result of
this treatment. At what point are the CC depth targets
considered safe for use on the human population? Can
damage such as that observed during this study be avoided
if patient response is monitored during CPR instead of
terum displacement?

Upon visual inspection of the synchronized signals, it is
apparent that EtCO₂ is a slow response variable, which
does not reflect sudden changes in applied CC depth
(Figure 2). This is especially evident when VF is induced
or there is a cessation of CCs, as decay period in the
capnogram may be observed. However, SBP appears to
respond instantaneously to changes in applied CC depth.

5. Limitations

The investigation was a retrospective analysis of a
previously obtained dataset. The objective of the original
study did not match the objective of this post hoc analysis.
Figure 2 Representative time series plots of EtCO2, BP and CC depth demonstrating the slow response of EtCO2 to sudden changes in CC depth

Treatment was not randomized during the study. Depth of CC increased with each episode which may have an indirect impact on physiological response of the animal. As observed as part of the analysis, EtCO2 had a decay artefact and requires a considerable amount of time to baseline, perhaps the 10-second interval between CC episodes would need extended to accommodate this.

6. Conclusions

This investigation provides encouraging preliminary results indicating that CC depths recommended by AHA and ERC guidelines may be excessive. As this is a retrospective analysis further research is required to establish the relationship between animals for CC depth and the physiological endpoints.

Conflicts of Interest

Olibhéar McAlister, Hannah Torney, Ben McCartney, Laura Davis and Adam Harvey are employees of HeartSine Technologies Ltd. Paul Crawford is a consultant veterinary anesthetist contracted by HeartSine Technologies Ltd.

Acknowledgements

The authors of this paper would like to thank the staff at the Roslin Institute (The University of Edinburgh) for their help collecting the presented data.

References

Address for correspondence.

Olibhéar McAlister
Ulster University, NIBEC, Newtownabbey, BT37 OQB
McAlister-o2@ulster.ac.uk