
Erick A. Perez-Alday¹, Haibo Ni², Christopher Hamilton¹, Annabel Li-Pershing¹, Bernard Jaar³, Jose M. Monroy-Trujillo³, Michelle Estrella³⁴, Rulan Parekh³⁵, Henggui Zhang⁶, Larisa Tereshchenko¹³

¹Oregon Health & Science University, Portland, OR, USA; ²University of California Davis, Davis, CA, USA; ³Johns Hopkins University, Baltimore, MD, USA; University of California San Francisco, San Francisco, CA, USA; ⁴University of Toronto, Toronto, Canada; ⁵University of Manchester, Manchester, United Kingdom.

Abstract

Extracardiac factors such as respiration, fluid overload and body habitus have important effects on the ECG voltage. Vectorcardiographic (VCG) Global Electrical Heterogeneity (GEH) is associated with sudden cardiac death (SCD). Risk of SCD is especially high in end-stage renal disease patients (ESRD) on dialysis. However, extracardiac factors challenge ECG interpretation in ESRD patients. The effects of extracardiac factors on GEH have not been fully studied. To assess effects of extracardiac factors on ECG, we conducted a multi-scale study. An experimental data of ESRD patients and a previously developed heart-torso model were used to investigate the effects of respiration, fluid overload and body habitus on the VCG and GEH.

1. Introduction

Vectorcardiographic (VCG) Global Electrical Heterogeneity (GEH) parameters are associated with sudden cardiac death (SCD) [1]. Both intracardiac and extracardiac factors can affect the ECG voltage, which can challenge the clinical interpretation of GEH. For example, both low [2] and high [3] sum absolute QRST integral (SAI QRST) was associated with increased risk of ventricular arrhythmia. In addition, interpretation of ECG voltage is especially difficult in patients with end-stage renal disease (ESRD) patients on dialysis, who frequently experience fluid overload, and are also at increased risk of cardiovascular disease (CVD) and heart failure, leading to pulmonary congestion, manifested by low ECG voltage. Fluid loss, resulting in decrease of body conductivity usually result in increased amplitude of the ECG voltage [4], which can mimic ECG-left ventricular hypertrophy[5].

Clinically it is important to differentiate whether ECG voltage and GEH changes are due to cardiac, or extracardiac factors. The effects of several extracardiac factors on ECG voltage and body surface potential (BSP) were studied previously [6, 7]. Several experimental models and in silico studies have been previously conducted to study the effects of tissue conductivity and body habitus in ECG voltage and BSP [5, 7, 8]. However, few studies have combined both experimental and modelling data to focus on VCG or GEH parameter.

The present multi-scale (in silico and clinical observational cohort) aims to investigate the effect of respiration, tissue conductivity and heart position (body habitus) on Vector Magnitude (VM) and GEH in ESRD patients on dialysis.

2. Methods

2.1. Experimental data

The prospective cohort Predictors of Arrhythmic and Cardiovascular Risk in End-stage renal disease (PACE) data [4, 9] was analysed. The study was approved by the Institutional Review Board, and all study participants signed written consent form before enrolment. PACE participants underwent 5 minutes (1000Hz) XYZ Frank ECG recording using Norav 1200 M PC ECG machine (Norav Medical Ltd, Thornhill, ON, Canada). Only sinus rhythm data was included in this study. From the 5 minutes ECG, two cardiac cycles recorded at different respiration phases during normal breathing – one at maximum inspiration and another at maximum expiration - were extracted. Each beat was inspected to ensure there was no noise nor distortion. Amplitudes of QRS complex and T-wave were measured on the VM. GEH parameters (spatial QRS-T angle, spatial ventricular gradient (SVG) magnitude (mag), azimuth (azi), and elevation (ele), and SAI QRST) were calculated for each beat, as previously described. GEH software code and equations are provided at: https://physionet.org/physiotools/geh/
2.2. Modelling data

A previously developed three dimensional (3D) biophysically detailed computational model of the human ventricles (Figure 1-Ai) was used to simulated normal ventricular activation [10]. The ventricular model is segmented into the major distinctive electrically heterogeneous regions (Figure 1-Aii). The models incorporated anatomical structures and detailed electrophysiological heterogeneity with cellular electrophysiology being previously described (Figure 1-Aiii) [10].

The ventricular model was incorporated in a previously developed heart-torso model [11], which considers the presence of blood masses, lung, liver, stomach, kidneys, spinal cord, ribs and fat tissue (Figure 1-B), each with different electrical conductivity based on previously published data (Table 1) [6, 12, 13]. Boundary element method was used to compute the electrical potentials on the surface of the body, resulting from an applied current density obtained from the electrical activity of the ventricular tissue-model. The details of the models have been previously described [10].

![Figure 1. Schematic illustration of the modelling procedure. A) Ventricular model with the anatomical structures and electrophysiological heterogeneity. B) Torso model with the inhomogeneity considered. C) Frank XYZ ECG system and equivalent circuit.](image)

2.3. Modelling Frank ECG system

To simulate the original XYZ Frank ECG system, the element of the thorax mesh closer to the position of the electrodes from the Frank system was selected (Figure 1-Ci) [14]. Then the circuit equations were solved to obtain the X, Y and Z leads from the simulated electrodes (Figure 1-Cii). Amplitudes of QRS complex and T-wave were measured on the VM. Finally, GEH parameters were calculated for each simulated case.

2.4. Modelling tissue conductivity

The tissue conductivities used in this study are based on experimental data and previous studies [6, 12, 13]. The conductivity values taken as normal were Lungs 0.08 S/m, Blood masses 0.60 S/m, Fat tissue 0.05 S/m, Bones 0.005 S/m, Kidneys 0.07 S/m, Liver 0.15 S/m, Stomach 0.12 S/m, averaged thorax 0.22 S/m. To simulate fluid in the interstitium, the conductivity of the averaged torso was varied, first in a homogenous torso, and then in the model that considered the rest of the tissues (i.e., heterogeneous torso). Results from cases were compared.

2.5. Modelling respiration

To simulate respiration, the lungs conductivity was varied. First, just the lungs were placed within a homogenous torso. Then, the remaining tissues were included (heterogeneous torso) and the conductivity of the lungs was varied in both cases. For the comparison of simulated data, the conductivity of the lungs was set to 0.03 and 0.13 S/m for inspiration and expiration, respectively.

2.6. Modelling body habitus

To simulate different body habitus, we considered two extremes, asthenic and hypersthenic body types, which we compared against normosthenic body habitus. For the asthenic body habitus, we rotated the long axis of the heart +45° on the Z-axis compared to normosthenic. To simulate hypersthenic body type, we rotated the long axis of the heart -45° on the Z-axis compared to the normosthenic position. All the tissues inside the body were modified in each case to fit the position of the heart and avoid tissue overlapping. However, size or conductivity of the tissues were not modified in any case.

3. Results

3.1. Experimental data

From the PACE participants, 254 subjects (mean age 54.6±13.5y; 56% male; 79% African American) were included in this study. The subjects included had a history of hypertension (99%), diabetes (54%), and cardiovascular disease (44%). They have an average body mass index (BMI) of 30.2±8.1. The average left ventricular ejection fraction (LVEF) was 66.7±11.5%.

3.2. Modelling results

3.2.1. Effects of tissue conductivity

When the conductivity was varied in the homogenous torso, a decrease in the QRS and T-wave VM amplitudes was observed consistently with a modelled increase in the conductivity (e.g. in fluid overload, oedema, pulmonary congestion). In the case of the homogenous torso, the changes of the QRS and T-wave amplitudes were the same. For the inhomogeneous torso, the changes were smaller for
the T-wave compared to the QRS magnitude (Figure 2).

![Figure 2](image)

Figure 2. Plot of the QRS VM (solid) and T-wave VM (dashes) normalized amplitude vs Conductivity (S/m) of the homogenous torso (red/yellow) and torso with the tissue inhomogeneity (blue/green).

3.2.1 Effects of respiration

Changes in the lungs conductivity produced a change in the VCG amplitude. Observed changes for the QRS and T-wave amplitudes were dramatically different. When the lungs conductivity was decreased (peak of inspiration), the QRS VM amplitude decreased in both homogenous and heterogeneous torso. However, the decrease in lung conductivity (peak of inspiration) was manifested by increase in the T-wave VM amplitude in the homogenous torso model. In contrast, a U-shaped association between a lung conductivity and a T-wave VM amplitude was observed for the heterogeneous torso (Figure 3).

![Figure 3](image)

Figure 3. Plot of the QRS (solid) and T-wave (dashed) VM normalized amplitude vs Conductivity (S/m) of the lungs within a homogenous torso (red/yellow) and within torso with the tissue inhomogeneity (blue/green).

3.2.1 Effects of body habitus

The position of the heart had an important effect on the amplitude and angles of the VCG. The large changes were observed in the QRS-T angle and the SVG azimuth (Figure 4). The difference of rotation from -45° to +45° of the heart axis along the Z-axis (Figure 4-i) yield to a difference of QRST angle from 22° for asthenic body habitus (Figure A-ii) to 151° for hypersthenic body habitus (Figure 4 C-ii).

![Figure 4](image)

Figure 4. Plot of the VCG loops of the different body habitus simulations: A) Asthenic (+45° rotation) B) Normo-sthenic (0° rotation); and C) Hypersthenic (-45° rotation).

3.3 Modelling vs experimental GEH parameters

Table 1 shows that the respiration effect on GEH observed in ESRD patients and in the simulated data, was largely consistent. However, modeling over-estimated effect of respiration on GEH, which was especially prominent for effect on SVG magnitude (6% difference).
Modeling study showed that a body habitus produced the largest effect on GEH. Change in the conductivity of interstitium produced the largest effect on ECG amplitudes. Respiration produced very small changes (Table 2), as compared to conductivity and a body habitus.

Table 1. GEH parameters during inspiration (Insp) and expiration (Exp), comparison between experimental and simulated data.

<table>
<thead>
<tr>
<th>Modelling</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insp.</td>
<td>Exp.</td>
</tr>
<tr>
<td>mV*ms</td>
<td>203.9</td>
</tr>
<tr>
<td>QRST ang. °</td>
<td>125.9</td>
</tr>
<tr>
<td>Wilson SVG mag, mV</td>
<td>67.6</td>
</tr>
<tr>
<td>SVG elev. °</td>
<td>50.9</td>
</tr>
<tr>
<td>SVG azi. °</td>
<td>42.7</td>
</tr>
<tr>
<td>QRS mag, mV</td>
<td>1.3</td>
</tr>
<tr>
<td>T mag, mV</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Table 2. Relative percentage of changes on the GEH parameters due to respiration, heart position and tissue conductivity.

<table>
<thead>
<tr>
<th>Respiration</th>
<th>Body type</th>
<th>Thorax conduct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>Simulated</td>
<td>Simulated</td>
</tr>
<tr>
<td>SAI</td>
<td>3.5%</td>
<td>3.8%</td>
</tr>
<tr>
<td>QRST</td>
<td>2.4%</td>
<td>4.6%</td>
</tr>
<tr>
<td>Wilson-SVG mag</td>
<td>5.7%</td>
<td>9.4%</td>
</tr>
<tr>
<td>SVG elev</td>
<td>1.3%</td>
<td>9.3%</td>
</tr>
<tr>
<td>SVG azi</td>
<td>18%</td>
<td>3.7%</td>
</tr>
<tr>
<td>QRS mag</td>
<td>6.4%</td>
<td>7.6%</td>
</tr>
<tr>
<td>T mag</td>
<td>1.9%</td>
<td>3.3%</td>
</tr>
</tbody>
</table>

4. Discussion and Conclusion

In this study we observed that the tissue conductivity had non-linear effect on the VM amplitude, in agreement with previous studies which investigated ECG voltages [6, 7]. This effect can explain clinically observed effects of edema and respiration on ECG voltages. Body habitus had an important effect on QRS-T angle and SVG direction. Observed differences in effect of conductivity on QRS and T amplitudes are provocative and require further study. Extracardiac factors, such as respiration, edema and body habitus, have main effects in the ECG voltage and direction of the vectors obtained from the VCG loops. Therefore, they must take into account in future ECG studies.

References

Address for correspondence:
Erick Andres Perez Alday, PhD,
3181 SW Sam Jackson Park Rd; UHN62; Portland, OR, 97239.
E-mail address: perezald@ohsu.edu