The Reproducibility of Global Electrical Heterogeneity ECG Measurements

Erick A. Perez-Alday¹, Christopher Hamilton¹, Annabel Li-Pershing¹, Jose M. Monroy-Trujillo², Michelle Estrella^{2,3}, Stephen M. Sozio², Bernard Jaar², Rulan Parekh^{2,4}, Larisa Tereshchenko^{1,2}

¹Oregon Health & Science University, Portland, OR, USA; ²Johns Hopkins University, Baltimore, MD, USA; University of California San Francisco, San Francisco, CA, USA; ⁴University of Toronto, Toronto, Canada.

Abstract

Background: Global electrical heterogeneity (GEH) is a useful predictor of adverse clinical outcomes. However, reproducibility of GEH measurements on 10-second routine clinical ECG is unknown.

Methods: Data of the prospective cohort study of incident hemodialysis patients (n=253; mean age $54.6\pm13.5y$; 56% male; 79% African American) were analysed. Two random 10-second segments of 5-minute ECG recording in sinus rhythm were compared. GEH was measured as spatial QRS-T angle, spatial ventricular gradient (SVG) magnitude and direction (azimuth and elevation), and a scalar value of SVG measured by (1) sum absolute QRST integral (SAI QRST), and (2) QT integral on vector magnitude signal (iVM_{QT}). Bland-Altman analysis was used to calculate agreement.

Results: For all studied vectorcardiographic metrics, agreement was substantial (Lin's concordance coefficient >0.98), and precision was perfect (>99.99%). 95% limits of agreement were $\pm 14^{\circ}$ for spatial QRS-T angle, $\pm 13^{\circ}$ for SVG azimuth, $\pm 4^{\circ}$ for SVG elevation, ± 14 mV*ms for SVG magnitude, and ± 17 mV*ms for SAI QRST. SAI QRST and iVM_{OT} were in substantial agreement with each other.

Conclusion: Reproducibility of a 10-second automated GEH ECG measurements was substantial, and precision was perfect.

Figure. Bland-Altman plot demonstrating agreement of detrended log-transformed SAI QRST and iVM_{OT.}