Ryanodine Receptors Coupling Causes a Calcium Leak in Cardiac Cell

Alexander Ryvkin^{1,2}, Nikita Markov²

¹ Institute of Immunology and Physiology UrB RAS
 ² Ural Federal University, Ekaterinburg, Russia

Abstract

Here we introduce results of a mathematical modeling of calcium sparks in cardiac cells. We developed a model of the calcium release unit which includes a single sarcoplasmic reticulum (SR) lumen, a regular 9x9 cluster of RyRs and a dyadic space. 2D diffusion problem of Ca2+ ions across the dyadic space was solved thereby we reproduced Calcium-Induced-Calcium-Release (CICR) effect and domino-like RyRs activation in the cluster.

We take into account allosteric and Ca^{2+} -induced coupling between RyRs. We show, that coupling between RyRs leads to the stability of Ca^{2+} sparks in amplitude and frequency. However, a sudden stop of spontaneous Ca^{2+} releases can be a result of strong allosteric coupling between RyRs.

1. Introduction

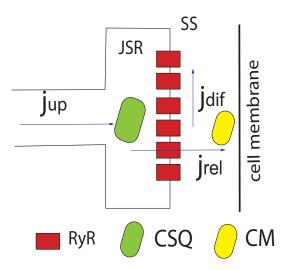


Figure 1. Schematic illustration of ${\rm Ca^{2+}}$ currents in the ${\rm Ca^{2+}}$ -release unit.

Local Ca^{2+} releases (so-called calcium sparks) are in the basis of a global Ca^{2+} release process which increases intracellular calcium level by an order of magnitude [1].

Talking about a single release unit (RU), which consists of a single jSR and a subspace, we need to take into account $\mathrm{Ca^{2+}}$ -binding proteins (buffers): calmodulin and calsequestrin which cause a delay of $\mathrm{Ca^{2+}}$ dynamics in subspace and in jSR. $\mathrm{Ca^{2+}}$ ions released via RyRs can activate nearest neighbors in "domino-like" style ($\mathrm{Ca^{2+}}$ -mediated coupling), so this process also amplifies the $\mathrm{Ca^{2+}}$ -release. Thus, $\mathrm{Ca^{2+}}$ diffusion in the subspace attracts considerable interest due to the complex RyRs activation process as well as the spark initiation and spread.

As it was argued recently [2] isolated from a sarcolemmal voltage oscillator (membrane "clock") RU can operate as a self-sustained oscillator (SR Ca²⁺ "clock"), described by a simple "release-pumping-delay" mechanism when a small spontaneous Ca²⁺ release from jSR to the subspace occurs as the primary or initiating event. When Ca_{SS} increases to a sufficient level, it amplifies the Ca²⁺ release via the mechanism of the CICR [3]; this relatively strong, secondary Ca²⁺ release simultaneously depletes (i.e., resets) jSR. The released Ca²⁺ is pumped into the nSR. The delay between releases is determined by the Ca2+ pumping rate and Ca2+ diffusion from the subspace to cytosol as well as diffusion from nSR to jSR. As Ca_{iSR} slowly increases, RyRs are restituted, and the next release is ultimately initiated, etc. However, disturbances in the periodicity of Ca²⁺ release may cause undesirable consequences for the automaticity of the pacemaker cells.

Calcium leak is caused by SERCA disturbances and RyRs dynamics violations. The Ca²⁺ leak is frequently found to be arrhythmogenic and contribute to Ca²⁺ waves and alternance [4]. Special genetic mutations of RyRs can be a reason of diverse diseases (e.g. catecholaminergic polymorphic ventricular tachycardia (CPVT)) [5]. Thus, RyRs opening-closing process should be described in details in the Ca²⁺ dynamics model. The regularity of the channel lattice is questionable [6, 7]; however, the researchers cope with the conclusion that there is both an allosteric and conformational interaction between closely enough located channels [5,6]. Ca²⁺-mediated, allosteric or conformational coupling between RyRs cause a cooperative effect of RyRs opening and closure and further spark formation. By means of computer modeling we tried to

find out which mechanism of interaction can lead to ${\rm Ca^{2+}}$ leak from the SR.

2. Methods

2.1. Model of calcium dynamics in the cardiac cell

In our model we take into account a single RU. $\mathrm{Ca^{2+}}$ dynamics is described by the system of reaction-diffusion equations:

$$\frac{dCa_{SS}}{dt} = \frac{V_{jSR}}{V_{SS}} j_{rel} - CM_{tot} \cdot \frac{df_{CM}}{dt}$$

$$\frac{dCa_{jSR}}{dt} = j_{refill} - j_{rel} - CQ_{tot} \cdot \frac{df_{CQ}}{dt}$$

$$\frac{df_{CM}}{dt} = k_{fCM}Ca_{SS} (1 - f_{CM}) - k_{bCM}f_{CM}$$

$$\frac{df_{CQ}}{dt} = k_{fCQ}Ca_{jSR} (1 - f_{CQ}) - k_{bCQ}f_{CQ},$$
(1)

where j_{refill} is the lumen refill flux (constant in the current model), j_{rel} is a release flux via open RyRs, V_{SS} and V_{jSR} are volumes of the subspace and the lumen respectively, f_{CQ} and f_{CM} are current concentrations of a bound calsequestrin and calmodulin respectively, CQ_{tot} and CM_{tot} are total concentrations of calsequestrin and calmodulin respectively.

2.2. Subspace Ca^{2+} diffusion model

In the current work we solve 2D ${\rm Ca^{2+}}$ diffusion problem across the subspace. In our model SR has a cluster of 9x9 RyRs.

$$\frac{\partial u}{\partial dt} = d \cdot \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right),\tag{2}$$

where u is the local (Ca_{SS} concentration in each node of the mesh. d is a diffusion constant.

We use an implicit finite-difference five-point stencil numerical scheme utilized for approximation of the diffusion equation. Parallel implementation on C++ with the use of PETSc makes it possible.

Our model describes Ca^{2+} fluxes between the RU compartments and the Ca^{2+} diffusion in the subspace.

2.3. RyRs stochastic dynamics model

Stochastic behavior of RyRs is described in our work in terms of previously developed Electron-Conformational model (ECM) [8,9]. This theory assumes that the RyR has only two degrees of freedom: slow conformational (refers to RyRs conformatioal opening/closure processes) and fast electronic (corresponds to $\mathrm{Ca^{2+}}$ ions effect on RyRs activational sites). RyRs states are described within the frame-

work of electron-conformational potential formalism 1:

$$E_{\pm}(Q_m) = \frac{K}{2}Q_m^2 - pQ_m \pm \frac{1}{2}aQ_m + \frac{1}{2}k\sum_{n=1}^4 Q_mQ_n,$$
(3)

where Q is a conformational coordinate, a is an electron-conformational coupling parameter, p is a parameter of an effective "pressure" of the lumen Ca^{2+} , K is the RyRs effective "elastic" constant. k is the conformational coupling parameter. Electron-conformational potential has two minima 2, left minimum corresponds to the closed state, right to the open. The probability of the interbranch transition between states depends on the Ca^{2+} concentration near each RyR:

$$P_{elect} = \alpha \cdot Ca_{SS},\tag{4}$$

where α is a coefficient of proportionality.

The ECM introduce a novel approach of the description of the RyRs allosteric coupling with their nearest neighbours. In 3 last term describes this kind of interactions with the coupling parameter k. As can be seen from 2 the shape of the potential changes, the minimum corresponding to the closed state of the channel becomes more global.

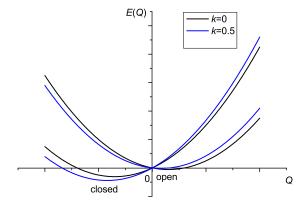


Figure 2. Electron-conformational potential of the RyR. Blue line corresponds to the electron-conformational potential with the allosteric coupling with the nearest closed neighbours.

3. Results

A series of computer experiments for the modeling of the $\mathrm{Ca^{2+}}$ release process and RyRs activation was performed. A standard set of the model parameters was taken from the $\mathrm{Ca^{2+}}$ -dynamics model in the rabbit pacemaker cell [2] to compare our previous simulation results [10] with the averaged $\mathrm{Ca^{2+}}$ and buffer concentrations in the current work: $k_{bCM} = 0.542~\mathrm{ms^{-1}}, k_{bCQ} = 0.445~\mathrm{ms^{-1}};$

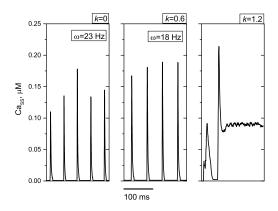


Figure 3. Timeseries of the mean subspace Ca^{2+} concentration Ca_{SS} for different values of the RyRs allosteric coupling k.

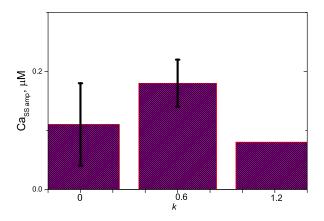


Figure 4. Calcium sparks amplitude Ca_{SSamp} for different values of the RyRs allosteric coupling k.

 $\begin{array}{l} k_{fCM}=227.7\;\mu\mathrm{M^{-1}ms^{-1}};\,k_{fCQ}=0.534\;\mu\mathrm{M^{-1}ms^{-1}};\\ CQ_{tot}=10\;\mu\mathrm{M};\,CM_{tot}=0.045\;\mu\mathrm{M};\,d=10^{-10}\;\mathrm{m^{2}/s},\\ V_{JSR}/V_{SS}=1.6. \end{array}$

Parameters of the computational method. Number of mesh nodes $m_x=m_y=240;$ a single RyR width $L_{RyR}=37$ nm, size of a single mesh node $L_{mesh}=1$ nm, timestep dt=0.01 ms. ${\rm Ca^{2+}}$ concentrations initial values $Ca_{jSR}(t=0)=1~\mu{\rm M},~Ca_{SS}(t=0)=0~\mu{\rm M},~N_{openrel}(t=0)=0.$

Electron-conformational model parameters $a=5, K=12, K_{Ca}=500~\mu\text{M}, Ca_{SS_crit}=100~\mu\text{M}, \alpha=0.0012~\text{ms}^{-1}\mu\text{M}^{-1}.$

Without taking into account $\mathrm{Ca^{2+}}$ diffusion in the subspace, previously, it was shown [10] during computer simulations that the conformational coupling between RyRs in the RU can serve as a stabilizing factor. The strengthening of the conformational cooperativity (k=1) determines the stability of the $\mathrm{Ca^{2+}}$ -clock oscillatory dynamics, as

well as fluctuations of the Ca_{SS} frequency and amplitude. The study of violations of the functioning of the Ca^{2+} -clock is especially important for studies of the arrhythmia. Extraordinary fluctuations of the internal Ca^{2+} -clock can disturb of self-oscillatory activity of the pacemaker cells, which can be an arrhythmogenic factor for the entire myocardium. In 3 timeseries of Ca_{SS} for different values of k are presented. In case of the absence of coupling between RyRs a high variance of Ca^{2+} sparks is observed. Switching on coupling $(k_{\tilde{b}}0)$ leads to the increase of the sparks amplitude and to the decrease of Ca_{SSamp} range (Fig. 4).

Further increase of the parameter k value ($k \downarrow 1.2$) caused a sudden stop of $\mathrm{Ca^{2+}}$ -clock oscillations. It is manifested in the appearance of a steady cluster of opened RyRs.

4. Discussion

In summary, we have demonstrated that the simple biophysically reasonable Electron-Conformational model is useful for the description of RyRs stochastic dynamics during sparks initiation-spread-termination process. Integrated to the $\mathrm{Ca^{2+}}$ dynamics model, this theory also can describe conformational and $\mathrm{Ca^{2+}}$ -mediated RyRs coupling.

Clearly, our model has a large number of simplifications and approximations. For example we do not take into account yet a complex structure of the $\mathrm{Ca^{2+}}$ release system as well as RyRs non-uniform spatial arrangement. Solving this problem is already underway, however, on this stage we are able to describe $\mathrm{Ca^{2+}}$ sparks initiation-spread-termination process in a single RU and to determine the conditions for the periodic $\mathrm{Ca^{2+}}$ release disturbances.

In this paper we found out a novel effect of the sudden stop of the periodic $\mathrm{Ca^{2+}}$ releases which can lead to $\mathrm{Ca^{2+}}$ leak and further cell functioning disturbances. We have shown that both strong enough $\mathrm{Ca^{2+}}$ -mediated coupling and conformational coupling between RyRs can be a reason of $\mathrm{Ca^{2+}}$ leak from the SR. Further studies should aim at the effect of sudden stop of the whole heart cell functioning taking into account extracellular ion currents.

Acknowledgements

The project is supported by RFBR grant 16-34-60223. The work was carried out within the framework of the IIF UrB RAS theme No AAAA-A18-118020590031-8 and RF Government Act 211 of March 16, 2013 (agreement 02.A03.21.0006).

References

[1] Cheng H, Lederer W, Cannell M. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 1993;262(5134):740–744.

- [2] Lakatta E, Maltsev V, Vinogradova T. A coupled system of intracellular Ca²⁺ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker. Circulation research 2010;106(4):659–673.
- [3] Wehrens X, Lehnart S, Marks A. Intracellular calcium release and cardiac disease. Annual Review Physiology 2005; 67:69–98.
- [4] Zima A, Bovo E, Bers D, et al. Ca²⁺ spark-dependent and -independent sarcoplasmic reticulum Ca²⁺ leak in normal and failing rabbit ventricular myocytes. The Journal of physiology 2010;588(23):4743–4757.
- [5] Williams G, Chikando A, Tuan HT, et al. Dynamics of calcium sparks and calcium leak in the heart. Biophysical journal 2011;101(6):1287–1296.
- [6] Marx S, Gaburjakova J, Gaburjakova M, et al. Coupled gating between cardiac calcium release channels (ryanodine receptors). Circulation research 2001;88(11):1151–1158.
- [7] Asghari P, Scriven D, Sanatani S, et al. Non-uniform and variable arrangements of ryanodine receptors within mammalian ventricular couplons. Circulation research 2014; 252–262.
- [8] Moskvin A, Ryvkin A, Solovyova O, et al. Electronconformational transformations in nanoscopic RyR channels governing both the heart's contraction and beating. JETP letters 2011;93(7):403–408.
- [9] Moskvin A, Philipiev M, Solovyova O, et al. Electronconformational model of ryanodine receptor lattice dynamics. Progress in biophysics and molecular biology 2006; 90(1-3):88–103.
- [10] Ryvkin A, Zorin N, Moskvin A, et al. The interaction of the membrane and calcium oscillators in cardiac pacemaker cells: Mathematical modeling. Biophysics 2015; 60(6):946–952.

Address for correspondence:

Name

Ryvkin Alexander 620000, Institute of Immunology Physiology UrB RAS, Pervomayskaya 106, Ekarerinburg, Russia E-mail alex-ryvkin@ya.ru