In Silico investigation of the Functional Impact of SCN10A Mutations in Human Atrial Cells

Inas Ali AL Nemi¹, Haibo Ni², Henggui Zhang¹

¹The University of Manchester, Manchester, UK
²University of California, Davis, CA, USA

Abstract

In normal conditions, action potential (AP) in cardiac myocytes is initiated by peak sodium current I_{NaP}, which become inactivated during depolarization (within milliseconds), leaving a less pronounce current known as late sodium current (I_{NaL}), which has a relatively smaller amplitude (~0.5%) compared to the I_{NaP} in normal cardiomyocytes. A recent study has identified three gain-of-function mutations in the SCN10A channel (the gene encoding the voltage-gated sodium channel $Na_{L,1.8}$, I_{NaL}) that have a correlation with the subsequent development of atrial fibrillation. However, the underlying mechanism responsible for the pro-arrhythmic effect of the gene mutations is unclear. This study aims to investigate the effect of the three gene mutations on atrial electrical action potentials.

Hodgkin-Huxley (HH) formulation of late sodium channel current in human atrial cells was developed and validated against experimental data obtained by voltage clamp techniques. The formulation was then implemented in Colman et al. human atrial model to simulate atrial APs for wild type (WT) and mutation conditions. It was shown that A1073 and P1092 mutations prolong the action potential duration (APD) and elevate the plateau (phase 2) potential compared to WT. Such altered AP profiles may alter tissue’s spatial heterogeneity, favoring the initiation and maintenance of atrial fibrillation, which warrants future study.

2. Methods

Hodgkin-Huxley formulations of the I_{NaL} developed by Grandi et al. [12] for human atrial cell were adopted and then incorporated into the modified version of Colman et al. model for the electrical APs of human atrial cells [13]. In simulation, the Nelder-Mead simplex algorithm was used to obtain the optimal set of parameters of the model that reproduce relatively the same kinetics of the I_{NaL} as obtained from the whole-cell patch clamp study of SCN10A channel for the wild type (WT), R1588Q, A1073, and P1092 mutations [11]. To validate the I_{NaL} model equation, simulated current–voltage relationship (I-V curve) were compared to experimental data as shown in Figure 1. The conductance of the WT I_{NaL} was chosen to be 0.5% of that of I_{NaP} illustrated in literature [14,15].

Although I_{NaL} is less pronounced in modulating the AP of cardiac myocytes, it could be enhanced under different pathological conditions such as AF, heart failure and ischemia [2–4]. Moreover, a considerable increase in I_{NaL} may result in an abnormality in the inactivation gate, which has distinctive mechanisms and causes. Therefore, I_{NaL} is attracting more attention as a desirable element in pathology and pharmacology for treating arrhythmias [5].

The link between atrial fibrillation (AF) (one of the most common type of cardiac arrhythmia) and mutation in different ion channels have been investigated in some previous studies [6–9]. Genome-wide association studies (GWAS) have identified the influence on the PR–interval duration related to genetic variants in SCN10A. Ritchie et al. have reported that SCN10A variants have a direct correlation with the subsequent development of AF [10].

In a recent study [11], three gain-of-function mutations (R1588Q, A1073, and P1092) in the SCN10A gene have been identified in patients with familial AF. However, the causative link between the identified mutations and pro-arrhythmogenesis in human atria has not been established yet. This study aimed to investigate the functional impact of the identified genetic variations related SCN10A channel on the electrical APs of human atrial cells.
Specifically, the model of the I_{NaL} was given by the following equation:

$$I_{NaL} = G_{NaL} \times m_L^3 (A_f \times h_L + A_s \times j_L)(V_m - E_{Na})$$ \hspace{1cm} (1)$$

where G_{NaL} is the maximum conductance of the channel, m_L is the activation gate, h_L and j_L are the fast and slow inactivation gates respectively, A_f and A_s are the fractions of fast and slow inactivation gates respectively, V_m is the membrane potential, and E_{Na} is the reversal potential of the channel.

The I_{NaL} was then included to the total ionic current I_{ion} that describe the change in the membrane potential:

$$\frac{dV_m}{dt} = -\frac{I_{ion}}{C_m}$$ \hspace{1cm} (2)$$

where V_m and C_m are the membrane potential and capacitance respectively. This equation can be integrated to obtain the AP.

To generate the electrical APs, the atrial single cell model was paced at the basic cycle length (BCL) of 1000 ms for 30 s to ensure the steady-state was reached before AP recorded for analysis. The effects of the SCN10A channel mutations on the AP morphology and duration were investigated. In addition, the impact of the genetic variation on the APD and plateau potential were quantified. The restitution properties of action potential duration at 90% repolarisation (APD_{90}) were also computed.

The effects of the mutations on AP and corresponding time course of other ion channels during AP are shown in Figure 2. The action potential duration (APD) was prolonged by P1092 and A1073 mutations more than $R1588Q$ mutation at a BCL of 1000 ms (Figure 2). The SCN10A mutations slowed down the AP repolarisation in phase1 and phase 2, resulting in an elevated plateau potential to more positive value (from 3 mV for WT to 8 and 9 mV for A1073 and P1092 respectively). The computed APD_{90} and plateau potential values of the simulated AP for the WT and SCN10A mutations are summarised in Figure 3.

Also, P1092 and A1073 mutations increased the intracellular calcium concentrations $[Ca^{2+}]_i$ compared with WT. This indirect effect is due to the reverse mode of Na+ - Ca2+ exchanger with Ca2+ actually entering the cell to recover more Na+ entered through Na+ channels. The main function of Na+ - Ca2+ exchanger is to remove Ca2+ from cardiac myocytes by using the electrochemical gradient of Na+ (forward mode).

Increased intracellular Ca2+ can increase the probability of early after-depolarizations (EADs), therefore increase the risk of AF and could have effects on reentry mechanisms.

In addition, A0173/P1092 mutations exhibited an increase in the peak of sodium current I_{NaP}. However, no noticeable change was marked in $R1588Q$ condition (Figure 2).

3. **Results**

3.1. **Effects of SCN10A mutations on action potential**

![Figure 1. Simulated and experimental I-V curves of I_{NaL} normalised to the maximal peak currents. Symbol with error bars represent the experimental data from [10] whilst lines show the simulation results.](image)

![Figure 2. Effects of the SCN10A mutations on the AP of human atrial myocytes paced at 1 Hz (Ai), with the time course of intracellular $[Ca^{2+}]_i$ (Aii), and time course of current traces for I_{NaL} (Aiii) and I_{Na} (Aiv).](image)
3.2. Effect of SCN10A mutations on APD restitution properties

S1-S2 protocol was used in order to determine the effect of SCN10A mutations on the APD restitution properties of human cardiac myocytes. The model was paced at 1 Hz by a train of S1 stimuli. Then S2 stimulus was applied with a range of time interval delay.

The results illustrated that the gain-of-function mutations altered the rate dependent of APD and steepened the slope of APD restitution curves in the model compared with the WT condition (Figure 5). The maximum APD restitution slope was nearly unchanged for R1588Q variant but steepened for A1073 and P1092 conditions.

4. Discussion

Colman et al. model of human atrial cells has been updated to incorporate the late sodium current I_{NaL}. The new model has been used to investigate the effect of SCN10A gene mutations on electrical function of human atrial cells.

Our results showed that P1092 and A1073 variants prolonged the APD$_{90}$ which resulting in steepened the APD restitution curves with increased the maximal slope, whereas R1588Q restitution curve remained unchanged from the WT. The longer AP and increase intracellular sodium concentration Na$^+$ that cause Ca$^{2+}$ overload in cardiomyocytes may increase the risk of AF [16,17].

In conclusion, the impact of SCN10A mutations on APD$_{90}$ and the intracellular [Ca$^{2+}$]$_i$ could have important implications to understand the mechanisms behind which mutations enhance atrial function and influence susceptibility to AF.

Acknowledgements

This project was funded by Jazan University, Jazan, Kingdom in Saudi Arabia.

References

[8] Olesen MS, Nielsen MW, Haunsø S, Svendsen JH. Atrial

Address for correspondence.

Inas Ali Al Nemi.
Room 3.17, Schuster Building,
University of Manchester,
Manchester, UK,
M13 9PL.
inas.alnemi@postgrad.manchester.ac.uk