Memristor models for early detection of sepsis in ICU patients

Vasileios Athanasiou¹, Zoran Konkoli¹

¹ Microtechnology and Nanoscience department, Chalmers University of Technology, Gothenburg, Sweden

Abstract

A supervised learning technique is used to carefully train memristor models to predict at an early stage whether a patient in intensive care unit (ICU) has the sepsis. A memristor behaves as a resistor, with a (mem)resistance that changes over time within a bounded interval. The resistance value depends on the full history of the applied voltage difference across the element, in the same way as the state of the brain depends on what a person has experienced in the past. Similarly, the information contained in the voltage difference time series can be encoded in the resistance value. Clinical variables measured subsequently each hour since the patient’s admittance in ICU are transformed into voltage difference signals with transformation functions. The training procedure involves the optimization of the transformation functions. The decision of whether to predict sepsis or not is taken by reading the value of the resistance.

1. Introduction

Sepsis is one of the main causes of mortality and morbidity in Intensive Care Unit (ICU). [1] Detecting sepsis at an early stage could result in the avoidance of the negative consequences because antibiotic treatment is more effective at the onset of the disease. [2, 3]

Traditional models for the early detection of sepsis have been found to be of low-performance. Instead, there is a need for machine learning models. [4] Such models could be used since they can read a big amount of clinical variable values and identify the risk of sepsis. Machine learning models for early prediction of sepsis have been developed and described in literature for patients in ICU [5] and in neonatal ICU [6]. Such models read clinical variables measured over time to detect the risk of sepsis.

Memristors have been successfully used for dealing with temporal information processing problems.[7, 8] The memristor is one of the simplest electronic components which accumulate information about their past [9]. It is a non-linear, passive, two-terminal component. It is a resistor with time-varying resistance, the memristance. The memristance’s rate of change at a specific time instance depends on the applied voltage difference across the memristor. Therefore, this component has the ability to remember: the memristance value at a time instance depends on the whole history of the applied voltage difference. The memristance is bounded within an interval $[R_{\text{min}}, R_{\text{max}}]$.

This component can be used as an inference unit for predicting sepsis if it is driven by a voltage signal generated through measurements of clinical variables. If the memristance is driven in a region $R_{b} < R < R_{\text{max}}$ (or $R_{\text{min}} < R < R_{b}$), then, this would indicate sepsis. Depending on how far (or close) the memristance value is from R_{b} could be used for estimating the probability of having the sepsis. This paper investigates whether the optimization of clinical variable transformations into voltage signals can contribute to the early accurate prediction of sepsis. Transformations could be trained with supervised learning by using data which consist of measured clinical variables from patients in ICU and a label of diagnosed sepsis for each hour since their admittance in ICU.

2. The inference unit

In this article, an inference unit is used as a basic component. The setup of the inference unit is shown in Fig. 1. In this figure, the graphs are hand-drawn examples to illustrate the main ideas. The data consists of 39 measured clinical variables, $x_{j}(t)$, and a label for every hour t since the patient’s admittance in ICU. The label shows sepsis ($l = 1$) six hours before the diagnosis of the disease and each hour afterwards. Data retrieved from 20643 (25000) patients are used as a training (validation) data-set.¹

The voltage signal V is generated by transforming each clinical variable with a transformation function $\Phi_{j}[x_{j}]$. Each transformation produces a voltage pulse with a duration $\tau = t/39$. If the clinical variable $x_{j}(t)$ is not available at time t (NaN), then the transformation function returns zero i.e a decision cannot be made whether the memristance value should move towards the sepsis region or not. The notation $\lbrack \rbrack$ is used to denote that the value of the trans-

¹these datasets have been downloaded from the website of PhysioNet challenge 2019
of utility scores on the training and validation data-sets is considered fixed in the rest of the paper. The function \(\theta \) is the unit step function, \(\theta(x) = 0 \), if \(x < 0 \), otherwise \(\theta(x) = 1 \).

The goal is to train the parameters \(w \) of the transformation functions used and the parameters \(R_b \) of the models involved. To grade the fitness of a choice of such parameters, a utility score \(\nu \) is used. This score is 0.0 if a system predicts always non-sepsis and 1.0 if the system predicts correctly all the cases of sepsis and non-sepsis. It increases if sepsis is correctly predicted up to 9 hours before and three hours after the diagnosis of sepsis. The maximum reward is given for 6 hours before sepsis happened. Otherwise, if sepsis is not correctly predicted (false positive), the utility score decreases. For every true negative, there is neither increase nor decrease in the score. Additionally, every false negative after the diagnosis of the sepsis decreases the score.

3. Predicting with one inference unit

Firstly, the training procedure is shown with one-memristor models. For a specific type of transformation function, its’ corresponding parameters \(w \) are trained given a training data-set. Since we have not calculated any analytical gradients of the utility score with respect to the parameters \(w \), it is not possible to use a gradient descent optimization. A searching algorithm is used. The space of the parameters \(w \) is searched to find high utility scores. In the first iteration, the best solution is searched among a broad space of possible solutions. A huge number of random solutions is evaluated by measuring the utility score on the training data-set. Fifty solutions with the highest utility score on the training data-set are also evaluated on the validation data-set. Finally, the solution with the highest sum of utility scores on the training and validation data-sets is kept as the best solution of the first iteration. In the second iteration, the space narrows centered around the best solution of the first iteration. Generally, in each next iteration, the space narrows centered around the best solution of the previous iteration until the space narrows to a local maximum. To increase the chances that a local maxima is also a global maxima, the space should be searched extensively during each iteration.

The maximum utility for every set of parameters \(w \), \(W_e \), is calculated with the following algorithm:

\[
\hat{R}(t) = \beta V(t) + 0.5 (\alpha - \beta) \left[|V(t) + V_{thr}| - |V(t) - V_{thr}| \right] \\
\theta[R(t) - R_{min}] \theta[R_{max} - R(t)]
\]

where, the parameters \(\beta, \alpha, V_{thr}, R_{min} \) and \(R_{max} \) are considered fixed in the rest of the paper.
IF

mu1 < Rin

\[R_{in} \]

\[R_{in}^* \]

\[R_{min} \]

\[R_{max} \]

\[R_{in} \]

\[R_{in}^* \]

\[R_{min} \]

\[R_{max} \]

\[R_{b} \]

\[R_{b}^* \]

\[R_{left} \]

\[R_{right} \]

\[\mu_1 > R_{in} \]

Figure 2.

1. set the parameters of the transformation function to \(W_c \).
2. simulate the model for every input of the training data-set.
3. during the simulation of each input, record the mean value of the memristance during each hour.
4. calculate and record the mean value of the memristance during each hour.
5. Use the recorded values to find the value of \(R_b \), \(R_b^* \), for which the utility score is maximum.

The last step of the above algorithm is executed within the optimization of searching the space. It should be relatively fast so as not to slow down the optimization algorithm. For this reason, we use a divide and conquer algorithm. The profile of the utility score is expected to be similar to the one shown in Fig. 2, a concave function of \(R_b \) with one global maxima. Two cases are considered, if \(\mu_1 < R_{in} \) then \(R_{min} < R_b^* < R_{in} \) and if \(\mu_1 > R_{in} \) then \(R_{in} < R_b^* < R_{max} \). Additionally, the probability for sepsis is calculated for the two different cases as follows. In the first case this probability is calculated as:

\[
Pr(R) = \begin{cases}
0 & \text{if } R \geq R_{in} \\
0.5 & \text{if } R_{in} > R > R_b^* \\
0.5 \frac{R - R_{in}}{R_{max} - R_b^*} + 0.5 & \text{if } R < R_b^*
\end{cases}
\]

(4)

and, in the second case:

\[
Pr(R) = \begin{cases}
0 & \text{if } R \leq R_{in} \\
0.5 & \text{if } R_{in} < R \leq R_b^* \\
0.5 \frac{R - R_{in}}{R_{min} - R_b^*} + 0.5 & \text{if } R > R_b^*
\end{cases}
\]

(5)

If \(Pr(R) > 0.5 \) then the system predicts sepsis.

The steps of the algorithm are as follows:

1. IF \(\mu_1 < R_{in} \)
 \(b_{low} = R_{min}, b_{high} = R_{in} \)
 ELSE_IF
 \(b_{low} = R_{in}, b_{high} = R_{max} \)
END_IF

2. choose two candidate solutions \(R_{c1} \) and \(R_{c2} \) so that \(b_{low} < R_{c1} < R_{c2} < b_{high} \)
3. DO_LOOP
 1. measure the utility scores \(\nu(R_{c1}) \) and \(\nu(R_{c2}) \)
 2. if(\(\nu(R_{c1}) > \nu(R_{c2}) \)), then, \(b_{high} = R_{c2} \)
 3. if(\(\nu(R_{c1}) < \nu(R_{c2}) \)), then, \(b_{low} = R_{c1} \)
WHILE_LOOP \((|\nu(R_{c1}) - \nu(R_{c2})| > \epsilon) \), for \(\epsilon \rightarrow 0^+ \)
4. \(R_b^* = R_{c1} \)

The system was trained with the transformation function \(\Phi_i^0 \). The utility score on the training and validation data-set is shown in table 1. It was found 0.3140 in the training data-set and 0.2411 in the validation data-set.

4. Predicting with many inference units

Up to here we have considered only one inference unit. However, if there are many inference units \(I_1, I_2, \ldots, I_N \) different to each other, then, it would be possible to take advantage of this heterogeneity to improve the prediction accuracy. \(^3\) For example, different units can be used for classifying based on different characteristics of the input. Herein, inference units are used in parallel to improve the prediction accuracy. If each inference unit \(I_i \) is trusted with a probability \(T_{ri} \), where \(\sum_{i=1}^{N} T_{ri} = 1 \) and predicts sepsis with a probability \(Pr_i \), then, the whole system would predict sepsis with a probability:

\[
Pr^N(R) = \sum_{i=1}^{N} T_{ri} Pr_i(R)
\]

(6)

In this work, training such systems is done in two steps. Firstly, the model \(I_1 \) is trained as it is explained in section 3, as an one inference unit. Secondly, the model \(I_2 \) is trained as an one inference unit, but by providing the probabilities of the model \(I_1, Pr_1(R) \). The probability of sepsis, which is used for training \(I_2 \), is considered as:

\[
Pr^2(R) = \frac{0.5}{0.5 + p_2} Pr_1(R) + \frac{p_2}{0.5 + p_2} Pr_2(R)
\]

(7)

where, the parameter \(p_2 \) is optimized additionally to the parameters of the transformation function of the unit \(I_2 \). \(p_2 \) is used to quantify the contribution of \(I_2 \) to calculating the total probability. The parameter \(p_2 \) is optimized after optimizing \(R_b \) with a similar algorithm. It is assumed that the utility score is a concave function of \(p_2 \) with one global maximum.

Similarly, the probabilities \(Pr_1(R) \) and \(Pr_2(R) \) could be used for training the model \(I_3 \) by optimizing an additional parameter \(p_3 \). So on, the models \(I_4, \ldots, I_N \) could be trained in the same way.

A system was trained when the model \(I_1 \) consisted of the transformation function \(\Phi_i^0 \) and the model \(I_2 \) consisted

\(^3\)submitted V. Athanasiou and Z. Konkoli, 2019
of the transformation function Φ_j^1. The utility scores are shown in the table 1 under the column $\Phi_j^0\Phi_j^1$. Additionally, a third model I_3 was trained with transformation function Φ_j^1. The utility scores of the three models combined are shown in the same table under the column $\Phi_j^0\Phi_j^1\Phi_j^\Delta$.

The utility scores, which are summarized in table 1 show that by additionally training a second and third model improved the utility scores on both training and validation data-sets. The question here is if training additional models always improves the utility scores. For example, one more particular question is if the utility scores would increase given that all the models I_0, I_1, I_2, I_3, I_4, \cdots, I_N consisted of the same transformation function Φ_j. Moreover, which transformation function Φ_j would be suitable? Another question is if the usage of more complex transformation functions, such as neural networks, could improve the utility scores. All these questions are to be answered in future work.

5. Conclusion

This work introduces a new method for training memristor models to predict at an early stage whether an ICU patient has the sepsis. Memristor are electronic elements which have been already used for solving temporal information processing problems. The results show that simple models with a small number of free parameters (79) can perform with utility scores in the range 0.2411 - 0.3140. A way was found to improve the utility scores by training additional models. Further work is needed to improve further the utility scores. In particular, one could use more complex models in collaboration with memristor model. In such a case, a new training procedure would be required to assure that the optimization algorithm converges to a large utility score. For example, if feed-forward neural networks were used to drive memristor models, then, a gradient descent optimization algorithm could be used for that purpose. All those developments are left for future work.

References

Address for correspondence:
Vasileios Athanasiou
Electronics Materials and Systems Laboratory
Kemivgen 9, MC2, Chalmers University of Technology, Gothenburg, Sweden
vasath@chalmers.se

Table 1. The maximum utility scores ν resulted from the training processes.

<table>
<thead>
<tr>
<th></th>
<th>Φ_j^0</th>
<th>Φ_j^1</th>
<th>$\Phi_j^1\Phi_j^1$</th>
<th>$\Phi_j^0\Phi_j^1\Phi_j^\Delta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>training</td>
<td>0.3140</td>
<td>0.3223</td>
<td>0.3241</td>
<td></td>
</tr>
<tr>
<td>validation</td>
<td>0.2411</td>
<td>0.2487</td>
<td>0.2501</td>
<td></td>
</tr>
</tbody>
</table>