Sepsis Prediction in Intensive Care Unit Using Ensemble of XGboost Models

Morteza Zabihi¹, Serkan Kiranyaz², Moncef Gabbouj¹

¹Tampere University, Tampere, Finland
²Qatar University, Doha, Qatar

Abstract

Sepsis is caused by the dysregulated host response to infection and potentially is the main cause of 6 million death annually. It is a highly dynamic syndrome and therefore the early prediction of sepsis plays a key role in the reduction of its high associated mortality. However, this a challenging task because there is no specific and accurate test or scoring system to perform this task. To address these challenges, we present a systematic approach for sepsis prediction. We also propose a new set of features to represent the missing pattern in clinical data. The pipeline of the proposed method comprises three major components: feature extraction, feature selection, and classification. In total, 407 features are extracted from the clinical data. Then, five different sets of features are selected using a wrapper feature selection algorithm based on XGboost. The selected features are extracted from both valid and missing clinical data. Afterwards, an ensemble model consists of five XGboost is used for sepsis prediction. Using the scoring mechanism provided by PhysioNet/Computing in Cardiology Challenge 2019, the overall score of 42.81 is achieved over the training dataset in 5-fold cross-validation. The proposed algorithm obtained an overall score of 0.422 on the sub set of the unseen test dataset.

1. Introduction

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection [1] and is often associated with lung, urinary tract, skin, and gut infections. The recent report of Center for Disease Control (CDC) shows that sepsis causes one out of every three hospital deaths [2] [3]. Besides the high mortality rate of sepsis, it imposes immense challenges to healthcare systems. From an economic perspective, sepsis implies high costs of hospital care with almost 17 billion USD annually in the United States [4] and 2.5 billion pounds in the UK [5]. Thus, sepsis prediction is a crucial element for appropriate clinical management and improvement of clinical outcomes.

The recent clinical criteria of sepsis [1] in the general hospital ward setting, recommend that quick Sequential [Sepsis-related] Organ Failure Assessment (qSOFA) should be used as a rapid evaluation of sepsis risk. This means that the patient should have at least two of the following clinical criteria to be considered as a patient with suspected infection: respiratory rate of 22 per minutes or greater, altered mentation, and systolic blood pressure of 10 mmHg or less. Moreover, in [1], the SOFA ≥ 2 score is determined to represent organ dysfunction. SOFA score consists of laboratory values and vital signs such as the fraction of inspired oxygen (FiO2), the partial pressure of oxygen (PaO2), platelets, liver bilirubin, and mean arterial pressure [1]. However, sepsis is a dynamic condition, and such criteria may not meet or present in all the time. This leads to inaccurate results of such approaches [6]. In addition, using clinical criteria for sepsis diagnosis in patients with critical situations (e.g., ICU patients) can be even more challenging due to the presence of misleading symptoms caused by other diseases [7].

Despite the slow changes in sepsis definitions, several studies have focused on the development of predictive models using machine learning to overcome the aforementioned challenges. In [8], the proposed method achieved significantly higher accuracy compared to the three standard sepsis-related scoring systems (i.e., SOFA, qSOFA, and MEWS). In [9], a variant recurrent neural network model is proposed for sepsis prediction. Their proposed model revealed that ICU length-of-stay, heart rate, white blood cell count, and temperature are the most relevant features for sepsis prediction. In [10], a model based on Weibull-Cox proportional hazards mode is proposed to predict the onset of sepsis in an ICU patient 4 to 12 hours prior to clinical recognition. Their method achieved the area under the receiver operating characteristic (AUROC) in the range of 0.83–0.85. These models have achieved higher accuracy compared to traditional clinical criteria. However, further studies are needed to improve their robustness, false alarm rate, and interpretability.

In this paper, we explore the use of an ensemble learning technique for sepsis prediction in ICU. The main contributions of this study are:

1) Investigating a comprehensive set of features and
tracking the top clinically relevant features. Moreover, introducing discriminative features for revealing the patterns of missing values in clinical data.

2) Designing a predictive model by ensembling 5 classifiers.

The remainder of this paper is arranged as follows: In Section 2, the dataset is briefly described and the proposed method is explained. In Section 3, the evaluation results are presented and discussed. Finally, concluding remarks and future extensions are outlined in Section 4.

2. Materials and methods

The dataset used in this competition collected from ICU patients in three hospitals. However, the provided dataset only includes data from two hospitals (including 40336 patients) while the third hospital is kept hidden to be used for final ranking. For each patient, eight vital signs, six demographics variables, and 26 laboratory values are provided for every hour. More detailed information can be found in [11]. The feature extraction, feature selection, and classification approach are described next.

2.1. Feature engineering

Often the clinical data are not collected consistently. Therefore, it is expected that the majority amount of data for some covariates is missing. It has been shown that imputing missing values for such covariates does not significantly improve the prediction performance [12]. On the other hand, the pattern of missing data may convey useful information [13]. Therefore, in this work, two different types of features are extracted. The first type of feature targets the covariates with the minimum number of missing values while the second type of feature focuses on the patterns of missing values in clinical data. The combination of these features forms a set of 407 features in total (see Table 1). Once the features are extracted, they are normalized to a mean of 0 and unit standard deviation. The extracted features are described as follows:

The first type of features are extracted from 13 covariates of heart rate (HR), pulse oximetry (O2Sat), temperature (Temp), systolic blood pressure (SBP), mean arterial pressure (MAP), diastolic blood pressure (DBP), respiration rate (Resp), age, gender, administrative identifier for MICU unit (Unit1), administrative identifier for SICU unit (Unit2), hours between hospital admit and ICU admit (HospAdmTime), and ICU length-of-stay (ICULOS). Before extracting the first type of features, the given data is imputed using linear interpolation. If the data is less than 3 hours (i.e., less than three observations), then the missing values are replaced with the mean value of the corresponding covariate in the training data. For age and gender, the missing values are replaced by the first valid value. If all the values in the given observations were missing, then they are imputed by the corresponding mean values. Once the data is imputed, the following features are extracted:

1) Sliding-window based features: Mean, minimum, maximum, median, variance, 95%, 99%, 5%, and 1% quantiles are calculated from the last 5 and 11 hours observations. We use two different time windows (i.e., 5 and 11 hours) to capture the short- and long-term temporal evolution of each covariate.

2) Non sliding-window based features: Energy, Shannon entropy, mean of the first differences, and the lengths of observations are calculated from the given frame.

3) The last observation values of the 13 covariates are also used as 13 separate features.

To calculate the second type of features, age and gender are excluded from the given covariates. These two demographic variables are constant for each patient during the monitoring and therefore their absence does not convey any information. To capture the pattern of missing intervals, we define the sequence abstraction. Each sequence is defined as a set of consecutive measurements where the values are either missing or present. Therefore, each sequence can either have missing or present values. For instance, let’s imagine the SBP measurements for 6 hours are \{nan, 122, 98, nan, nan, 123\}, then based on the definition, we have 4 sequences of \{nan\}, \{122, 98\}, \{nan, nan\}, and \{123\}. Using the sequence abstraction the following features are calculated (see Figure 1):

1) Mean and variance of the lengths of sequences along each covariate, Lc.

2) Summation and variance of the lengths of sequences with only valid values (without missing) along each covariate, Lcv.

3) Mean and variance of the lengths of sequences along each observation, Lo, in the last 5 hours.

It is worth mentioning that the input clinical data have a varying length, and it is possible that the number of observations is not enough to extract the sliding-window based features. For such cases, the clinical data is padded using the first observation. Amount of padding equals to

<table>
<thead>
<tr>
<th>Observation</th>
<th>HR</th>
<th>Temp</th>
<th>SBP</th>
<th>Lc</th>
<th>Lo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>{3}</td>
<td>{3}</td>
</tr>
<tr>
<td>2</td>
<td>97</td>
<td>NaN</td>
<td>98</td>
<td>{1, 1, 1}</td>
<td>{1, 1, 1}</td>
</tr>
<tr>
<td>3</td>
<td>89</td>
<td>NaN</td>
<td>122</td>
<td>{1, 1, 1}</td>
<td>{1, 1, 1}</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>NaN</td>
<td>NaN</td>
<td>{1, 2}</td>
<td>{1, 1}</td>
</tr>
<tr>
<td>5</td>
<td>103</td>
<td>NaN</td>
<td>122</td>
<td>{1, 1, 1}</td>
<td>{1, 1, 1}</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>NaN</td>
<td>NaN</td>
<td>{1, 2}</td>
<td>{1, 1}</td>
</tr>
<tr>
<td>7</td>
<td>108</td>
<td>36.1</td>
<td>123</td>
<td>{1, 1, 1}</td>
<td>{1, 1, 1}</td>
</tr>
<tr>
<td>8</td>
<td>106</td>
<td>NaN</td>
<td>93</td>
<td>{1, 1, 1}</td>
<td>{1, 1, 1}</td>
</tr>
<tr>
<td>9</td>
<td>104</td>
<td>NaN</td>
<td>133</td>
<td>{1, 1, 1}</td>
<td>{1, 1, 1}</td>
</tr>
<tr>
<td>10</td>
<td>102</td>
<td>NaN</td>
<td>134</td>
<td>{1, 1, 1}</td>
<td>{1, 1, 1}</td>
</tr>
</tbody>
</table>

Figure 1. Sequence abstraction example for HR, Temp and SBP covariates.
the difference between the number of observations in the given data and the number of needed ones. This enables us to transform the raw data into a feature space with a fixed length. Thus, discriminative methods, such as XGBoost and random forest, can be applied to such dynamic data.

2.2. Feature selection and classification

The proposed classification algorithm consists of two main steps:

1. In the first step, five sets of best performing features and hyper-parameters are selected. We perform the feature selection and hyper-parameter tuning in a 5-fold cross-validation scheme using 10% of the original training data. For feature selection, we employ a wrapper feature selection algorithm based on XGboost (BoostARoota [14]). It creates shadow features by randomly shuffling the original features. If a shadow feature obtains an importance value more than the original feature, then the corresponding original feature is discarded. The importance metric is the number of times that a particular feature was split on in the XGBoost algorithm. In addition, a grid search is used to find the best performing combinations of hyper-parameters.

2. In the second step, we used an ensemble of five XGBoost models. XGBoost is a decision tree based ensemble using gradient boosting framework [15] and its effectiveness has been established in a wide range of applications including clinical sequence modeling. To train the proposed ensemble, we randomly split the remaining 90% of the original data into five equally disjoint sets. Then, each set is used to train a classifier. Moreover, due to the imbalance problem between sepsis and non-sepsis observations, we separately balance the data for each XGBoost using the random undersampling technique. Finally, we use the geometric mean to integrate the results of the five classifiers. The training strategy of the proposed method is shown in Figure 2.

3. Results and discussion

We test our predictive model in a 5-fold cross-validation scheme using the training data. The results are reported in Table 1 (for more information about the scoring system refer to [11]).

We observe that among the second type features (sequence abstraction) 102 out of 162 features were selected commonly using BoostARoota algorithm in 5-fold cross-validation. This shows the significance of the proposed features in sepsis prediction. Moreover, among the selected features by BoostARoota the mean of HospAdmTime in the last 5 hours, the summation of LCV for TMP, age, energy of HospAdmTime and Unit1, variance of HR and TMP in the last 11 hours were ranked among the top 10 features. The ranking is performed by the contribution of features in each tree in the XGBoost model.

4. Conclusions

In this work, we proposed a systematic approach for sepsis prediction in ICU. We investigate a set of features to capture the transitional states of covariates by using two time windows with different lengths. In addition, we introduce a new set of features to represent the missing patterns in clinical data. We examined the importance of features using BoostARoota algorithm and found that the missing data convey relevant information for sepsis prediction. In our experiment, the proposed method achieves a robust average AUROC and accuracy of 0.8333 and 0.8440, respectively.

<table>
<thead>
<tr>
<th>Fold</th>
<th>AUROC</th>
<th>ACC</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.8387</td>
<td>0.8394</td>
<td>0.4366</td>
</tr>
<tr>
<td>1</td>
<td>0.8357</td>
<td>0.8418</td>
<td>0.4412</td>
</tr>
<tr>
<td>2</td>
<td>0.8436</td>
<td>0.8477</td>
<td>0.4521</td>
</tr>
<tr>
<td>3</td>
<td>0.8221</td>
<td>0.8451</td>
<td>0.3899</td>
</tr>
<tr>
<td>4</td>
<td>0.8268</td>
<td>0.8464</td>
<td>0.4208</td>
</tr>
<tr>
<td>Average (std)</td>
<td>0.8333 (0.0078)</td>
<td>0.8440 (0.0030)</td>
<td>0.4281 (0.0215)</td>
</tr>
<tr>
<td>Sub-set of the hidden test data</td>
<td>0.422</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References

Address for correspondence:
Morteza Zabihi
P.O. Box 553, FI-33014, Tampere, Finland
Morteza.zabihi@tuni.fi