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Abstract 

To test the performance of signal averaging on body 

surface electrocardiograms (SAECG), a comparative 

analysis of four sources of perturbation, 1) uncorrelated 

noise, 2) beat alignment, 3) physiological variability and 

4) respiratory movement was performed. The first two 

cases were assessed using a computer model of a 

ventricular beat. The other two cases were tested using 

high resolution body surface signals recorded from a torso 

tank (N=2) and patient data (N=4) respectively. In the first 

case, SAECG successfully removed a high level of noise 

made up of white Gaussian noise (WGN) with σ = 10 µV 

and 50 Hz noise with a signal to noise ratio (SNR) of 9 dB 

since the root mean square error of the noise (RMSEnoise) 

was 0.65 ± 0.01 µV and 1.30 ± 0.01 µV, respectively. The 

RMSE of the averaged QRS (𝑅𝑀𝑆𝐸𝑆𝐴𝑄𝑅𝑆) was slightly 

changed by physiological variability (𝑅𝑀𝑆𝐸𝑆𝐴𝑄𝑅𝑆 =

4.18 ± 1.38 µ𝑉) when comparing the SAQRS resulting 

from the average of 100 different beats taken from the same 

recording. While SAQRS are distorted by respiration 

artefacts, the beats selected during the exhalation phase 

produced the least distortion to the SAQRS with a 

𝑅𝑀𝑆𝐸𝑆𝐴𝑄𝑅𝑆 = 16.28 ± 12.58 µV. 

To conclude, SAECG can efficiently de-noise signals in 

presence of uncorrelated noise without distorting the 

SAQRS. However, respiration motion introduces amplitude 

shift between SAQRS. 

 

 

1. Introduction 

Signal averaging of an ECG (SAECG) is a non-invasive 

technique to reduce noise or increase the signal to noise 

ratio (SNR) without the distorting effects of filtering on the 

QRS [1]. This technique is mostly used in the detection of 

low amplitude signals called “late potentials” [2], [3], [4], 

markers for sustained ventricular arrhythmias embedded in 

the QRS but usually hidden by skeletal muscle activity and 

by external noise localized at the end of the QRS. The 

SAECG is also used to evaluate the risk for atrial 

fibrillation focusing on prolonged P wave [5] and for non-

invasive electrocardiographic imaging [6]. 

Another potential application is the detection of His bundle 

activation from body surface signals [7]. However the very 

small potential associated to the His bundle activity 

combined with residual noise make this detection very 

challenging. 

A high efficiency of SAECG to de-noise 

electrocardiograms (ECG) is imperative to identify low 

amplitude variations of ECG in part responsible for some 

arrhythmias. In this study, we aim to report the 

performance of SAECG in terms of noise reduction and 

SAQRS modification testing various sources of signal 

perturbation, with the goal of setting an optimal workflow 

for future studies. 

 

2. Materials and methods 

2.1. Datasets 

Three datasets were used to accomplish this study. 

(i) A computer model (N=1) from a torso model with 252 

body surface recordings at 1000Hz [8] composed of a 

ventricular beat duplicated into multiple beats equally 

spaced (RR interval = 909 ms (66 bpm)) or randomly 

spaced (RR interval =800 +/- 59 ms (75 bpm)). (ii) 5-

minutes of experimental data (N=2, sinus rhythm and left 

ventricular pacing) obtained from a torso tank with 256 

surface signals recorded at 2048 Hz simultaneously with 

108 epicardial signals from a pig heart suspended inside 

and (iii) clinical data (N=4) composed of 128 body surface 

signals and breathing signal recorded simultaneously from 

a respiratory belt at 2048 Hz were used. 

 

 



2.2. Comparisons methods 

The efficacy of SAECG was assessed using 3 metrics: 

1- the RMSE of noise (RMSEnoise) based on the average 

of the squared differences between a signal without noise 

(RMSEnoise= 0) and the noise measured over an interval of 

50 ms during the ST segment; 

2- the RMSE of the SAQRS (RMSESAQRS ) that measures 

the root mean square error between the “SAQRS gold 

standard” and the SAQRS obtained after SAECG. The 

“SAQRS gold standard” chosen is detailed for each case in 

Section 2.3; 

3- the correlation coefficient of the SAQRS 

(CorrCoeffSAQRS) calculated between the “SAQRS gold 

standard” and the SAQRS obtained after SAECG. 

The results presented for these 3 metrics were computed 

from beat averaging for all the recorded leads. The mean 

of all the averaged leads was computed (252 channels for 

the computing model, 256 channels, for the experimental 

data, and 128 channels for the clinical data) and then the 

mean over the N sets of data available was computed. For 

the experimental data N=2, for the clinical data N=4 and 

for the computer model N=15 as 15 random choices of 200 

consecutives beats were used to compute the mean. 

Variables were reported as mean±SD.  

 

2.3. Methods 

The first step of SAECG was the creation of a virtual 

lead and a virtual template used for beat detection and 

alignment using a  principal component analysis (PCA) 

[9]. PCA is a dimension-reduction technique used to 

reduce a large set of correlated variables to a smaller set of 

linearly uncorrelated variables called principal 

components. The first principal component contains the 

largest variance and was used in this study. The virtual 

template is compared with each beat of the virtual lead, by 

cross correlation. The positions for the alignment were 

determined as the position where the cross correlation was 

maximal. Finally beat averaging was performed over all 

recorded and aligned beats for each lead. Each case was 

processed using SAECG with or without signal processing 

tools (notch filter, band pass filter (BPF), baseline 

removal) to finally compute the three metrics presented in 

Section 2.2 (Figure 1). Signal processing algorithms were 

developed using Matlab (2015Rb).  

Four sources of perturbation were analyzed to study the 

performance of SAECG. 

 

Case 1: additive noise  

To study the efficiency of SAECG to remove noise, a 

WGN (σ =10 µV) was added to the simulated data (RR 

interval constant) and independently a 50 Hz noise with a 

SNR of 9 dB was added (RR interval non constant). For 

the latter, the use and performance of a notch filter was 

analyzed. The alignment was perfect as the known 

positions of each ventricular beat was used for averaging. 

The RMSESAQRS and the CorrCoeffSAQRS were computed 

between the SAQRS (gold standard) without any noise. 

 
Figure 1: Workflow to test the SAECG performance. For 

each dataset signal processing methods can be applied 

independently, combined with each other or not used. Then 

SAECG is performed for each dataset using perfect 

alignment for case 1 and case 3 while QRS detection and 

alignment are determined with PCA method for case 2 and 

case 4. Finally, the three indicators can be computed. 

Case 2: alignment perturbation 

To study the effect of a bad alignment on the SAQRS, a 50 

Hz noise with a SNR of 9 dB, a WGN (σ =30 µV) and 

baseline noise (created by fitting a spline to a patient 

dataset) were added to the simulated data (RR interval non 

constant). The use and performance of a notch filter and a 

BPF at 0.01Hz to 30 Hz were compared. The RMSESAQRS 

and the CorrCoeffSAQRS were computed between the 

SAQRS obtained from dataset 1 after adding the different 

noises exposed previously 1) based on the average of 

perfectly aligned beats (SAQRS gold standard) and 2) the 

SAQRS based on PCA to set the positions of the beats 

(SAQRS observed). 

 

Case 3: physiologic variability 

To study the impact of physiological variability on the 

SAQRS using the experimental data, electrograms from the 

sock, because of the sharper QRS complex recorded, were 

used to set the QRS positions and to avoid any 

misalignment. To eliminate noise a notch filter with a band 

frequency of 1 Hz and baseline removal were applied. 

SAQRS from five subsequences (100 beats each) of 

recording from dataset 2 were compared with each other 

(10 comparisons in total) to evaluate the variability of the 

SAQRS as explained in Figure 2. 

https://en.wikipedia.org/wiki/Correlation_and_dependence


 

Figure 2: Workflow to compute the RMSESAQRS for the 

physiological variability and the respiration motion study 

(for the latter case only three comparisons were 

performed). 

Case 4: respiratory artefacts 

To study the impact of respiration on the SAQRS using the 

clinical data, three scenarios were compared: 1) only the 

beats in the exhalation respiratory phase were averaged, 2) 

only the beats during the inhalation respiratory phase were 

averaged, and 3) all the beats were averaged independently 

of the respiration. Baseline removal was used as a 

processing step. Three SAQRS made from the average of 

100 beats each along the same recording were compared 

with each other (3 comparisons in total) to evaluate the 

variability of the SAQRS. 

 

3. Results 

Case 1: additive noise  

Adding a WGN with σ =10 µV to the recording shows that 

after SAECG, RMSEnoise decreases as expected in 
 σ

√Nbeats
 

since RMSEnoise=0.65+0.01 µV with Nbeats (number of 

averaged beats) = 200. In the presence of a 50 Hz noise 

(SNR = 9 dB) the use of a notch filter with a band 

frequency (BF) of 1 Hz reduced highly the noise in the 

signal (RMSEnoise=1.30±0.01 µV with notch filter vs 

2.40±1.70 µV without notch filter), with a minimal 

distortion of the SAQRS in terms of amplitude though the 

difference without notch filter was around half the 

RMSESAQRS value while using a notch filter 

(RMSESAQRS =1.43±0.00 µV with notch filter vs 

2.30±1.67 µV without notch filter).  

Our results also demonstrated that it is better to use a notch 

filter when the SNR of a 50 Hz noise is lower than 19 dB. 

However with higher SNR, the use of a notch filter is not 

necessary. Moreover these results are valid for 200 

averaged beats. To conclude, 50 Hz and WGN noises can 

easily be removed by SAECG. 

 

Case 2: alignment perturbation 
Using a BPF was better than a notch filter to reduce noise 

(RMSEnoise = 1.41±0.01 µV vs 3.08±0.5 µV). While the 

Coeff_corrSAQRS in both cases was equal to 1, the BPF led 

to a smaller RMSESAQRS than the notch filter 

(RMSESAQRS = 0.51±0.20 µV vs RMSESAQRS =

 2.15±1.00 µV). As the levels of noise in case 1 (beat 

alignment is perfect) and case 2 are about the same range, 

we can conclude that a bad detection of alignment does not 

affect the SAQRS in terms of distortion. 

 

Table 1: Table summary of the results 

 

BF = Band Frequency BPF = Band Pass filter         WGN = White Gaussian Noise 

BL = Baseline  SNR = Signal to Noise Ratio 

 

Case 3: physiological variability 

Physiological variability has no effect on the SAQRS 

correlation coefficient (CorrCoeffSAQRS= 0.98±0.01) and 

a minimal impact on the RMSESAQRS (RMSESAQRS= 

4.18±1.38 mV) while averaging 100 beats. 

 

Case 4: respiratory artefacts 

SAECG in different phases of respiration demonstrated 

that selecting the beats during the exhalation phase 

produced the least change in the QRS waveforms 

amplitude (Figure 3A) when compared to the inhalation 

phase (B) or without any preliminary selection of the beats 

 
𝐑𝐌𝐒𝐄𝐧𝐨𝐢𝐬𝐞 

(𝝁V) 
𝐑𝐌𝐒𝐄𝐐𝐑𝐒 

(𝝁V) 
𝐂𝐨𝐫𝐫𝐂𝐨𝐞𝐟𝐟𝐐𝐑𝐒 

Before 

SAECG 
SAQRS 

Before 

SAECG 
SAQRS 

Before 

SAECG 
SAQRS 

WGN (Ϭ=10 

 𝝁V) 

9.23 

±0 .06 

0.65 

±0.01 

9.99 

±0.2 

0.71 

±0.00 

0.99 

±0.00 

1.00 

±0.00 

50HZ 

(SNR=9dB) no 

notch filter) 

56.24 

±12.65 

2.40 

±1.70 

42.43 

±0.01 

2.30 

±1.67 

0.94 

±0.00 

1.00 

±0.00 

50HZ 

(SNR=9dB, 

notch  filter BF 

= 1) 

16.21 

±6.49 

1.30 

±0.01 

2.87 

±0.29 

1.43 

±0.00 

1.00 

±0.00 

1.00 

±0.00 

WGN + 50HZ + 

BL (notch  filter  

BF =1) 

38.21 

±8.07 

3.08 

±0.5 

40.73 

±8.44 

2.15 

±1.00 

0.93 

±0.00 

1.00 

±0.00 

WGN + 50HZ + 

BL (BPF [0.01 

30] Hz) 

9.03 

±0.30 

1.41 

±0.01 

12.66 

±1.35 

0.51 

±0.20 

0.96 

±0.00 

1.00 

±0.00 

Physiologic 

variability 

6.84 

±1.23 

1.30 

±0.68 

12.89 

±2.94 

4.18 

±1.38 

0.87 

±0.03 

0.98 

±0.01 

Exhalation 

respiratory 

phase 

6.85 

±2.95 

1.88 

±1.23 

38.59 

±16.00 

16.28 

±12.58 

0.95 

±0.06 

0.99 

±0.01 

Inhalation 

respiratory 

phase 

6.89 

±2.70 

1.95 

±1.25 

60.12 

±51.14 

18.69 

±14.60 

0.93 

±0.04 

0.99 

±0.01 

No phase 

selected 

7.70 

±3.10 

1.97 

±1.20 

47.27 

±23.88 

19.21 

±16.54 

0.94 

±0.06 

0.99 

±0.01 

CASE 1 CASE 2 CASE 3 CASE 4 



(C). This is quantified by an RMSESAQRS of 16.28±12.58 

µV compared to RMSESAQRS= 18.69±14.60 µV and 

RMSESAQRS= 19.21±16.54 µV respectively. However, the 

correlation coefficient (CorrCoeffSAQRS= 0.99±0.1) was 

similar for the three scenarios indicating there is minimal 

deformation of the QRS waveform. 

 

 
Figure 3: Comparison between two SAQRS from two 

subsequences (100 beats averaged) within the same 

recording from dataset 3. 

A. SAQRS selected during the exhalation respiratory 

phase. 

B. SAQRS selected during the inhalation respiratory 

phase. 

C. SAQRS with no preliminary selection of the beats. 

4. Discussion 

The presented results demonstrate that SAECG is a 

performant technique to remove uncorrelated noise and to 

reveal the true underlying QRS complex. These results are 

consistent with previous studies showing the efficiency of 

SAECG, especially to detect small electrical components 

as the late potentials. 

While the present study has supplied much useful 

information about the efficiency of SAECG, it has several 

limitations that must be acknowledged. Firstly, the results 

of this study could be more accurate using larger and 

longer experimental and clinical datasets. Finally, the 

correlation coefficient of the SAQRS was computed on the 

entire SAQRS complex leading to correlation coefficient 

superior to 0.9 in most cases. However, when using 

SAECG to detect late potentials for instance a very small 

distortion of the QRS can affect their detection but will not 

deteriorate the correlation coefficient much. Therefore, the 

results of this study would have to be interpreted according 

to each specific application.  

 

5.  Conclusion 

SAECG is a powerful signal processing technique to de-

noise the ECG without distorting the signals.  

50 Hz noise, WGN and baseline artefacts while using 

SAECG (coupling to certain filtering process in some 

cases) do not disturb the alignment, are easily removed and 

SAQRS distortion is minimal. Physiological variability has 

a weak impact on the SAQRS distortion with SAQRS using 

different beats within the same recording showing only 

very small deformations. On the other hand, the respiratory 

motion can deteriorate the SAQRS, but by selecting the beats 

during the exhalation phase can reduce the amplitude shift 

effects of the SAQRS. 
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