Data Quality Assessment of Capacitively-coupled ECG signals

Ivan Castro\(^1\), Carolina Varon\(^1\), Jonathan Moeyersons\(^1\), Amalia Villa Gomez\(^1\), John Morales\(^1\), Margot Deviaene\(^1\), Tom Torfs\(^2\), Sabine Van Huffel\(^1,2\), Robert Puers\(^1,2\), Chris Van Hoof\(^1,2\)

\(^1\) KU Leuven, Leuven, Belgium
\(^2\) imec, Leuven, Belgium

Abstract

Acquisition of capacitively-coupled ECG (ccECG) from daily life scenarios is limited by its sensitivity to motion and its variability in signal quality. With the purpose of performing a quality-based ccECG classification, 48 features were evaluated in different classification models by using a dataset comprising 10000 15-second ccECG segments. Feature subsets with potential high classification performance were identified and evaluated in multiple supervised models, for two classification problems with different tolerance to artefacts. This resulted in balanced accuracies of 94.02% and 92.4%, achieved using a Linear SVM and a fine KNN respectively. These models are useful tools for real-time and offline processing of ccECG signals recorded in real-life scenarios.

1. Introduction

Long-term electrocardiography (ECG) recordings from real-life environments have been an important focus of recent research. Capacitively-coupled ECG (ccECG) has been demonstrated as a technology that has the potential to achieve this goal and enable unobtrusive health monitoring [1,2], thereby improving the quality of life of people and lowering healthcare costs.

Despite the advantages of ccECG, it is highly susceptible to motion artefacts (MAs) [1–3], which are particularly problematic in recordings from real-life environments (e.g. while driving, while sleeping). This leads to a great range of signal quality [4] and limits most of its use to experiments in controlled conditions. A promising approach to increase the robustness of extracted cardiac information is the use of signal quality indicators (SQIs) and quality-based classification models (CMs). These enable MA handling methods such as offline post-processing and real-time robustness methods [5,6].

Research on SQIs for ccECG is an important field, as there is the need for an automatic assessment of the ccECG quality. Since artefacts and noise in ccECG can be different than in contact ECG [3], conventional ECG SQIs may not be sufficient for a ccECG quality indication. Furthermore, the required signal quality can differ between ccECG from a real-life scenario and contact ECG from a hospital environment, depending on the specific intended use or application.

Some work on ccECG signal classification has been published in recent years. This includes the use of ‘filter masks’ to identify saturation, high frequency content and low signal power, with a reported balanced accuracy (BA) of 64.5% (44% sensitivity & 85% specificity) when evaluated in laboratory conditions [7]. Another approach [8] included a logistic regression model using pressure signals and an evaluation of signal saturation, which resulted in overall BA of 88.5% (93% sensitivity & 84% specificity) when evaluated in an airplane seat setting. An evaluation of driving monitoring [9] reported different quality-based classification algorithms. This resulted in a best-performing result with BA of 75% (54.7% sensitivity & 95.3% specificity).

In this work, 48 SQI features were evaluated to be used in classification models. Different feature subsets were fed into multiple supervised models, and their BA was obtained as a performance metric.

2. Methods

2.1. Dataset

For the evaluation of the ccECG SQIs and CMs, ccECG signals from diverse scenarios were used. These signals included data recorded from a system described in [5,10] as well as from the UnoVis publicly available ccECG dataset [11]. The data comprised 10000 15-second randomly selected ccECG segments, resulting in the distribution shown in Table 1. For each scenario, it included data with floating sensors, to allow a classification in situations in which no user is being measured. Because of this, the quality distribution does not represent the signal coverage for these scenarios; such a coverage evaluation out of the scope of this work.
classification problems (i.e. -classifL- and -classifH-).

Different supervised classifiers for both binary was evaluated. This was done by training and validating 19 of different feature subsets identified by the FS methods classification performance. The classification performance 3. threshold-based one-level decision tree (DT)

Random Forest (RF) classification as proposed in [13]; and available in the machine learning toolbox of Matlab

of: 1. neigborhood component analysis (NCA) [12]

2. ccECG useful for heart rate variability (HRV) analysis and possibly morphology analysis. In total, 90 segments with strong annotation disagreement (i.e. labelled as 1 and 3 by different annotators) were discarded, resulting in a 9910-segment dataset. The remaining segments had an agreement of at least 3 annotators and a Fleiss’ Kappa of 0.80.

2.2. Feature selection & classification models

The three annotation levels were assigned to two binary classification problems: one with a ‘low threshold’ (level 1 vs level 2-3) -classifL- and another with a ‘high threshold’ (level 1-2 vs level 3) -classifH- (Table 2). The resulting class distributions are shown in Table 2. This division allows to evaluate classifications in which signals with moderate artefacts are still considered useful as well as a stricter classification that only considers ‘level 3’ signals as useful. Different scenarios can benefit from these classifications (e.g. for -classifL- problem for HR and HRV extraction, -classifH- problem for morphology analysis). Each dataset was divided in 70% training and 30% test, preserving the binary distribution ratio.

48 SQI features were extracted from each ccECG segment, including the features evaluated in [10]. Feature selection (FS) was performed on the training set by means of: 1. neighborhood component analysis (NCA) [12] available in the machine learning toolbox of Matlab®; 2. Random Forest (RF) classification as proposed in [13]; and 3. threshold-based one-level decision tree (DT) classification performance. The classification performance of different feature subsets identified by the FS methods was evaluated. This was done by training and validating 19 different supervised classifiers for both binary classification problems (i.e. -classifL- and -classifH-).

Five Annotators with experience in ECG signal processing labelled the segments in three quality levels: 1. Useless or no ccECG; 2. ccECG with artefacts that may affect the detection of 2 to 5 heartbeats; 3. ccECG useful for heart rate variability (HRV) analysis and possibly morphology analysis. In total, 90 segments with strong annotation disagreement (i.e. labelled as 1 and 3 by different annotators) were discarded, resulting in a 9910-segment dataset. The remaining segments had an agreement of at least 3 annotators and a Fleiss’ Kappa of 0.80.

3. Results and discussion

Two feature subsets were obtained from each of the three FS methods. Table 3 shows the best-performing SQI feature subset from each method for each problem, together with the best performing classifier and its corresponding BA. A brief description of the selected features is presented below.

corrSQI: Based on the extraction of a beat template and its similarity to each QRS. The metric is obtained by averaging (or obtaining the average without outliers, or the median) of QRST complexes from the ccECG window and computing the average of the individual correlations of the template with each of the beats. This was done by using the beat detector from [15]. This SQI was individually evaluated for ccECG by the authors [10] and previously proposed for contact signals [16].

bsSQI: Based on the agreement of two different beat detectors. It is obtained by comparing the detections from two algorithms (Hamilton & Tompkins [17] and Zong et al. [18]) and calculating the agreement rate of these. More details can be found in [19] and [20]. An initial evaluation of this metric by the authors on ccECG can be found in [10].

SDR: Ratio between power spectral density of band of interest and a broader band. (i.e. [5-14] Hz and [0-50] Hz). This was initially used in [19] for contact ECG for different limits, and evaluated by the authors for ccECG in [10].

msSQI: Modulation spectrum metric originally proposed in [21]. It consists of the windowed calculation of the frequency spectrum of the signal, followed by the spectrum of the spectral magnitudes. This results in a frequency-frequency representation used to extract the modulation energy of the signal. Details for its calculation can be found in [21].

bkSQI: Kurtosis-based metric using experimentally

Table 1. Overview of 15-second ccECG segments included in the evaluation of quality-based classification models.

<table>
<thead>
<tr>
<th>Data source</th>
<th>Data type</th>
<th>Number of segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data recorded from system in (5,10)</td>
<td>Static car seat</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td>Bed form factor</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td>Office chair, normal working conditions</td>
<td>1520</td>
</tr>
<tr>
<td></td>
<td>While driving a car</td>
<td>480</td>
</tr>
<tr>
<td>UnoVis database (11)</td>
<td>While driving a car</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>Bed form factor</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>Armchair form factor, induced MAs</td>
<td>1000</td>
</tr>
</tbody>
</table>

An important part of the data included floating sensors, which caused the class distribution to be unbalanced. Therefore, all the model training was done by setting a prior probability distribution of the classes as uniform (balanced distribution), so that the classification methods compensate for the dataset imbalance. In addition, the metric BA [14] was used to compare the models. This avoids an overestimation of the classification performance.

Table 2. Overview of 15-second ccECG segments included in the evaluation of quality-based classification models.

<table>
<thead>
<tr>
<th>Classification problem</th>
<th>Binary quality grouping</th>
<th>Distribution (Bad vs Good)</th>
</tr>
</thead>
<tbody>
<tr>
<td>'classifH'</td>
<td>(1,2) (Bad) vs 3 (Good)</td>
<td>80.5% vs 19.5%</td>
</tr>
<tr>
<td>'classifL'</td>
<td>1 (Bad) vs (2,3) (Good)</td>
<td>65.8% vs 34.2%</td>
</tr>
</tbody>
</table>

...
determined Kurtosis ranges of the mean of per-beat Kurtosis values. This metric receives a value of 1 when the per-beat Kurtosis is in the range (4.4-21) and a value of 0.5 for Kurtosis in the range (3.8-4.4) and (21-40). Other Kurtosis values are fixed to 0.3.

sKurt: Kurtosis calculated for the complete signal segment.

bSkewMod: Skewness-based metric. It replaces too-high values of the averaged per-beat Skewness using experimentally determined limits. Average per-beat Skewness is kept for values lower than 3.5. A value of 0 is assigned to the metric for higher Skewness.

VrmsSQIper: Percentage of sub-windows in the (0.005 – 0.4) mVrms range. Sub-windows are 750 ms wide.

SD_b2b: Standard deviation of beat-to-beat HR values.

SD_QSw: Standard deviation of Q-S durations measured in ms.

MedianAD_QSw: Median Absolute Deviation of Q-S durations measured in ms. Calculated from all the beats in the evaluated window.

MeanAD_QSw: Mean Absolute Deviation of Q-S durations measured in ms. Calculated from all the beats in the evaluated window.

MedianAD_QRd: Median Absolute Deviation of Q-R distances (Q-R trace) from the beats in the window.

It can be seen from Table 3 that the selection methods partially agreed on the selected features. Specifically, the (corrSQI) appears in all the feature subsets. This is in agreement with previous work [10], which concluded that this SQI has the highest performance when used as a standalone cECG SQI.

The results of the best 5 classifiers (with BA > 80%) for each of the feature subsets are shown for the ‘classifH’ and ‘classifL’ problems in Figure 1 and Figure 2 respectively. In addition, the classification performance when using all the 48 features is included for reference purposes. The CMs in this work are important tools in the field of unobtrusive cardiac monitoring in real-life environments.

These achieved a maximum BA of 94.02% (95.19% sensitivity & 92.85% specificity) – for the ‘classifH’ problem, with a linear Support Vector Machine (SVM),

<table>
<thead>
<tr>
<th>Problem</th>
<th>Method</th>
<th>SQI Features</th>
<th>Classifier (BA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘classifH’</td>
<td>NCA</td>
<td>{corrSQI(trimmedmean, _1_bSQL, _1_SDR2, _1_msSQL, _1_bkSQL, _1_SD_QSw)}</td>
<td>Coarse Gaussian SVM (93.69%)</td>
</tr>
<tr>
<td>‘classifH’</td>
<td>RF</td>
<td>{corrSQI(trimmedmean, _1_SDR2, _1_sKurt)}</td>
<td>Linear Discriminant (93.71%)</td>
</tr>
<tr>
<td>‘classifH’</td>
<td>DT</td>
<td>{corrSQI(mean, VrmsSQIper, SD_b2b)}</td>
<td>Linear SVM (94.02%)</td>
</tr>
<tr>
<td>‘classifL’</td>
<td>NCA</td>
<td>{_1_SD_b2b, _1_bSQL, MedianAD_QSw, _1_bkSQL, corrSQI(mean, MeanAD_QSw), _1_corrSQI(mean, MeanAD_QRd)}</td>
<td>Fine KNN (92.4%)</td>
</tr>
<tr>
<td>‘classifL’</td>
<td>RF</td>
<td>{_1_corrSQI(mean, VrmsSQIper, SD_b2b, MeanAD_QRd)}</td>
<td>Fine KNN (90.84%)</td>
</tr>
<tr>
<td>‘classifL’</td>
<td>DT</td>
<td>{_1_corrSQI(mean, VrmsSQIper, SD_b2b)}</td>
<td>RUS-Boosted Trees (91.74%)</td>
</tr>
</tbody>
</table>
and 92.4% (89.97% sensitivity & 94.84% specificity) – for the ‘classifL’ problem, with a fine K-nearest neighbors (KNN) classifier. These accuracies are higher than previously reported ccECG classification literature cited in the introduction section (with max. BA 88.5%).

The distinction of two classification problems allows to not only identify clean signals, but also signals contaminated with artefacts that still contain ECG information, which is a more challenging classification problem.

Although classifiers using all the 48 features had slightly higher BAs than the presented CMs after FS, the latter allow to perform this classification with a reduced set of features. This significantly lowers the computational complexity, while keeping high BAs. Low-complexity CMs are especially useful in real-time artefact handling approaches and allow for fast post-processing approaches to improve the extracted information from unobtrusive, ubiquitous ECG monitoring.

4. Conclusions

This work presented CMs with high BA to be used in the automatic classification of ccECG signals from real-life environments. It was found that a DT-based feature subset with a linear SVM performs best for a ‘classifH’ problem, while an NCA-based subset with a KNN classifier performs best for a ‘classifL’ problem. This type of classification is relevant not only as a post-processing tool, but also for real-time hardware adaptation approaches such as the modification of hardware settings [5] or the selection of electrodes from high-density arrays [6]. These tools are expected to result in increased coverage when acquiring signals from real-life scenarios and a reduction in the error of specific features of interest such as heart rate and heart rate variability. High-performance classification models and SQIs such as the ones presented in this work are key to enabling the use of ccECG collected from daily life, in order to allow health monitoring and long-term follow-up of patients.

Fine tuning of the classification cost of the models depending on the specific applications, and application-driven evaluations are necessary to further confirm the usefulness of these classification tools.

Acknowledgments

The authors would like to thank the creators of the UnoVis database for making it publicly available.

References

Address for correspondence:
Ivan D. Castro
imec: Kapeldreef 75, 3001 Leuven, Belgium
ivand.castro@imec.be