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Abstract
End-stage renal disease (ESRD) affects more than 10%

of the world population. ESRD patients present impaired
potassium homeostasis, which increases the risk for ven-
tricular arrhythmias and sudden cardiac death. Non-
invasive estimation of serum potassium, [K+], before the
patient experiences serious consequences is of major im-
portance. In this study, we investigated the relationship
of [K+] with three T-wave morphological descriptors: the
T-wave width (Tw), slope-to-amplitude ratio (TSA) and
temporal morphological variability (dw) from ECGs of 12
ESRD patients undergoing hemodialysis and from simu-
lated ECGs. Spearman’s correlation coefficients between
the descriptors Tw, TSA and dw and [K+] were −0.5,
0.8 and 0.65, respectively. These associations were, how-
ever, highly patient-dependent. The high inter-individual
variability in T-wave morphology, particularly observed at
high [K+], was reproduced in the simulations and could
be explained by differences in transmural heterogeneities,
with 10% variations in the proportion of midmyocardial
cells leading to changes larger than 15% in T-wave mor-
phology. In conclusion, T-wave morphological descrip-
tors have the potential to be used as predictors of [K+] in
ESRD patients, but their associated inter-individual vari-
ability should be taken into account, especially under hy-
perkalemic conditions.

1. Introduction

End-stage renal disease (ESRD) represents a global
health burden, with an estimated 10% of the worldwide
population being affected. This involves high associated
economic cost, increased mortality risk, and decreased

quality of life for affected patients [1]. As renal function
declines, ESRD patients present an increasingly impaired
ability to maintain potassium homeostasis. Serum potas-
sium levels ([K+]) outside normal ranges, in the form of
hypokalemia or hyperkalemia, increase the risk for life-
threatening arrhythmias and sudden cardiac death [2]. In-
vestigating the effects of [K+] variations on the electrical
functioning of the heart could help improve therapies and
risk stratification tools, for example by using the ECG to
continuously monitor [K+].

Variations of [K+] levels have been shown to affect de-
polarization and repolarization features of the ECG in pre-
vious studies [3–5], suggesting that indeed it is possible
to infer [K+] from the ECG. However, in patient data we
found a wide variety of relations between [K+] and re-
polarization characteristics in the ECG. These repolariza-
tion features are also influenced by the dispersion of re-
polarization properties in the heart. Therefore we hypoth-
esized that the inter-individual differences in the relation
between [K+] and ECG features can be caused by inter-
individual differences in the dispersion of primary repo-
larization properties. We simulated a set of ventricular
fibers covering a wide range of transmural heterogeneities
and we calculated pseudo-ECGs at different [K+]. We
characterized the simulated T-wave morphology changes
by using three descriptors (Tw, TSA[6] and dw[7]) and
we compared them with those from ECGs of patients un-
dergoing hemodialysis (HD), i.e. experiencing large [K+]
variations. Upon confirmation of the model’s ability to
reproduce inter-individual variability in the evaluated T-
wave descriptors, we performed a sensitivity analysis to
assess the dependence of T-wave morphology descriptors
on transmural heterogeneities and assess whether transmu-



ral dispersion indeed contributes to explain inter-individual
differences in T-wave morphology, particularly for [K+]
values out of normal ranges.

2. Methods

Clinical Measurements The study population included
12 ESRD patients from Hospital Clı́nico Universitario de
Zaragoza (HCUZ). 48-hour 12-lead ECGs were acquired
at a sampling frequency of 1 kHz and amplitude resolu-
tion of 3.75 µV (H12+, Mortara Instruments, Milwaukee,
WI, USA). The acquisition started 5 minutes before the
HD treatment onset and lasted for 48 hours (Figure 1 bot-
tom blue line). Simultaneously, six blood samples were
taken and analyzed during the HD session: the first one at
the HD onset and the next three samples every hour during
the HD session (Figure 1, K1 to K4 in red). The 5th blood
sample was collected at the end of the HD (minute 215 or
245, depending on the patient) while the 6th blood sam-
ple was taken after 48 hours, immediately before the next
HD session. Extracellular potassium concentrations, [K+],
were measured at those time points, as shown in Figure 1.
The ethical committee approved the study protocol, with
all patients providing signed informed consent.

Figure 1. Diagram of the study protocol. K1 to K6 are the
time points (in minutes) for blood sample extraction.

The measured ECG signals were band-pass filtered (0.5
to 40 Hz) to remove baseline wander, muscular noise, and
powerline interference. QRS detection and wave delin-
eation were performed by using a wavelet-based single-
lead delineation method [8]. To emphasize T-wave com-
ponents while allowing more accurate delineation, Prin-
cipal components (PCs) were obtained by computing the
auto-correlation matrix of T-waves in a stable ECG seg-
ment at the end of the HD session. The ECG recording
was subsequently projected into the direction of the 1st PC.
The T-waves in the obtained 1st PC were delineated [8]
and used for further analysis. In simulated pECGs, single-
lead wavelet-based delineation was directly applied over
the signals. The onset, peak, and end of the T-wave were
determined.
Computational Modeling Transmural electrical propa-
gation from ventricular endocardium to epicardium was
simulated using 1-dimensional fibers (1.65 cm). A train
of 10 stimuli was applied to the first cell of the fiber every

1000 ms with an amplitude equal to 1.5 times the diastolic
threshold. Cellular electrophysiology was represented by
a modified version of the O’Hara model [9] for the hu-
man ventricular action potential, as described by Dutta et
al. [10]. To compute electrical propagation, a finite ele-
ment method-based software [11] was used with a time
step of 0.5 ms and space discretization of 0.01 cm. Intra-
cellular and extracellular conductivities in the fiber were
adjusted to obtain a conduction velocity of 44 cm/s.

Different proportions of endo-, mid- and epicardial cells
were simulated for a total of 19 combinations: endocar-
dial layer ranging from 10% to 50%, midmyocardial layer
from 10% to 40% and epicardial layer from 20% to 80%.
We use the notation CXYZ, where C stands for the word
“case” and X, Y and Z denote the first digit of the propor-
tions of endocardial, midmyocardial and epicardial cells,
respectively (e.g. C532 represents the case with 50%, 30%
and 20% of endocardial, midmyocardial and epicardial
cells, respectively).

Pseudo-electrocardiogram signals (pECGs) were com-
puted using equation (1) as described by Gima et al. [12]:

Ve = ε

∫
∇Vm · (∇

1

r
) dr, (1)

where ε is a constant proportional to the ratio of intracel-
lular and extracellular conductivities, Vm is the transmem-
brane potential and r is the distance between each cell in
the fiber and the virtual electrode located 2 cm away from
the last epicardial cell in the fiber direction.

Simulations for each ventricular fiber and associated
pECGs were run for five different values of [K+], which
included the reference physiological level in the O’Hara
model, i.e. [K+] = 5.4 mmol/l, as well as two levels below
and two above it: [K+] = 2, 3, 5.4, 7, 8 mmol/l.

T-wave Morphology Characterization The following
T-wave morphological descriptors were studied:
• Tw, representing the width of the T-wave from T-wave
onset to T-wave end;
• TSA, representing the ratio between the T-wave down-
ward slope and amplitude, calculated as in [6]; and
• dw, representing temporal variations in T-wave mor-
phology [7] (Figure 2).
dw was computed considering as a reference T-wave the

T-wave measured at physiological [K+] = 5.4 mmol/L
in the simulations and the T-wave measured at the end
of the HD session in ESRD patients. Let’s now con-
sider the T-wave for a given [K+] (mmol/L), fs(ts) =
[fs(ts(1)), ..., fs(ts(Ns))]

>, and the reference T wave,
fr(tr) = [fr(tr(1)), ..., fr(tr(Nr))]

>, where tr =
[tr(1), ..., tr(Nr)]

> and ts = [ts(1), ..., ts(Ns)]
> and Nr

and Ns are the total durations of tr and ts. Figure 2 (top
left panel) shows fr and fs, with their respective time do-
mains, tr and ts. Let γ(tr) be the warping function that



Figure 2. Time warping analysis for simulated fiber C118.
Top left panel shows reference (blue) and studied (red) T-
waves aligned with respect to their gravity centers. The
blue area in the right panel represents dw. Bottom left
panel depicts the final warped T-waves.

relates tr and ts, such that fs(γ(tr)) denotes the time-
domain warping of fs(ts) using γ(tr). The square-root
slope function (SRSF) transformation is defined as:

qf (t) = sign(ḟ(t)) |ḟ(t)| 12 . (2)

The optimal warping function is the one that minimizes the
SRSF amplitude difference:

γ∗ (tr)=argmin
γ(tr)

(∥∥∥qfr (tr)− qfs (γ (tr))
√
γ̇ (tr)

∥∥∥). (3)

A dynamic programming algorithm was used to obtain the
optimal warping function, γ∗(tr), that optimally warps
fr(tr) and fs(ts), which is shown in Figure 2 (right
panel). The warped T-wave, fs(γ∗(tr)), is shown in Fig-
ure 2 (bottom left panel), together with the reference T-
wave, fr(tr).

The descriptor dw (Figure 2, right panel) quantifies the
level of warping required to optimally align two T-waves:

dw =

(
sd
|sd|

)
1

Nr

Nr∑
n=1

|γ∗ (tr (n))− tr (n) |, (4)

where sd =
∑Nu

r
n=1(γ

∗ (tr (n))− tr (n)) is used to account
for the sign estimated at the Nu

r T-wave upslope samples.

Sensitivity Analysis To assess how the proportion of
endo-, mid- and epicardial cells modulated T-wave mor-
phology descriptors at different [K+], a sensitivity analysis
was performed. For each T-wave descriptor, the percent-
age of change and its sensitivity to changes in the propor-
tion of cells of each ventricular layer were computed as
follows [13]:

Dm;p;ai =

(
Mp;ai −Mcontrol

Mcontrol

)
× 100, i = 1, 2 (5)

Sm;p;a1,a2 =

(
Dm;p;a2 −Dm;p;a1

a2 − a1

)
× 100 (6)

whereMp;a is the value of the T-wave descriptor (m) under
a varying proportion a of cells in the analyzed layer (p)
calculated at proportions a1 and a2. Mcontrol is the value
of the T-wave descriptor at the default proportion of cells
in the layer, this being 30, 30 and 40% for endocardial,
midmyocardial and epicardial cells, respectively.

3. Results and Discussion

Figure 3 illustrates the results of the T-wave character-
ization for one of the ventricular fibers simulated in this
study. Panel (a) shows the aligned T-waves corresponding
to [K+] ranging from 2 to 8 mmol/L. Panels (b), (c) and
(d) show the relationship between each of Tw, TSA and dw
and [K+], respectively. [K+] elevation leads to a reduction
in the T-wave duration, an increase in the ratio between
T-wave slope and amplitude and enhancement of T-wave
temporal morphological variability.

Figure 4 illustrates the T-wave descriptors Tw, TSA and
dw for four simulated fibers (top Panel (a)) and four pa-
tients of the study population (bottom panel (b)) as a func-
tion of [K+], respectively. Although the three T-wave
morphology descriptors are correlated with [K+] (median
Spearman’s correlation coefficients of−0.5, 0.8 and 0.65),
a diversity of patterns in the three relationships is apparent,
both in simulated and patients’ ECGs.

Figure 5 shows the results from the sensitivity analy-
sis for TSA. Analogous results were obtained for Tw and
dw. As can be observed, the largest sensitivity of TSA
was found to variations in the proportion of midmyocar-
dial cells within the ventricular wall. This was particularly
more prominent when [K+] became elevated above phys-
iological levels. For [K+] = 8 mmol/l, sensitivity values
above 150% were found, which means that 10% variations
in the midmyocardial proportion led to changes larger than
15% in TSA (similarly for the other T-wave descriptors).

Descriptors of T-wave width, amplitude-to-slope ratio,
and temporal morphological variability were shown to
vary with [K+] in both simulated and measured ECGs, but
a wide range of patterns was observed for such relation-
ships. The proportion of midmyocardial cells within the
simulated ventricular fibers has a large impact on T-wave
morphology descriptors, particularly under elevated [K+].
This suggests that transmural heterogeneities can have a
relevant role in predicting the patient-specific response of
ventricular repolarization to hyperkalemia.
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Figure 3. T-waves and Tw, TSA and dw evaluated for simulated fiber C145 under varying [K+]. The arrow in the left panel
indicates the direction of increasing [K+] from 2 to 8 mmol/L.

Figure 4. Tw, TSA and dw for simulated fibers C118,
C127, C136 and C532 and patients HCUZP1, HCUZP4,
HCUZP8 and HCUZP15 at varying [K+].

Figure 5. Sensitivity analysis for TSA to variations in the
proportion of endocardial (left), midmyocardial (middle)
and epicardial (right) layers at varying [K+].
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