Comparison of Morphology-Based and Delay-Based Measures for Reference Beat Classification during Atrial Tachycardia

Laura Anna Unger1, Armin Luik2, Annik Haas2, Olaf Doessel3
1Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 2Medizinische Klinik IV, Staedtisches Klinikum Karlsruhe, 3Institute of Biomedical Engineering, Karlsruhe Institute of Technology


Abstract

Beat acceptance and rejection during atrial tachycardia are crucial for the compilation of meaningful electroanatomical maps during an electrophysiological study. State of the art methods compare the delays in activation time between two or more electrograms recorded with electrodes of a spatially stable reference catheter.

This work introduces morphology-based measures for beat selection in the context of mapping atrial tachycardia. Active segments were extracted from bipolar reference electrograms with the help of the non-linear energy operator. After prealignment by means of maximum cross-correlation, the correlation coefficient as well as the normalized 1-norm distance yielded a similarity measure for each pair of prealigned active segments. The morphology-based measures were then compared to the delay-based measure.

In an exemplary patient with 5163 recorded beats, the delay-based measures were strongly dependent on the accuracy of the local activation times as well as on the selection of reference leads. The morphology-based measures emphasized changes in the target tachycardia which were not detectable by the delay-based method. The correlation and the distance measure showed similar behavior but stressed different aspects of morphological changes. Ventricular components in active segments caused minor changes in morphology which were also reflected in the morphology-based measures.

The morphology-based measures introduced in this work enhanced beat selection in the exemplary patient. A follow-up study with a representative patient cohort needs to quantify the improvement across patients and translate the measure to clinical practice. A combination of activation delays and morphological similarity is strongly expected to exploit the advantages of both methods for beat selection.