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Abstract 

In this article we present a simple technique that 

utilizes the cross correlations between ECG signals and 

haemodynamic signals for the purpose of assessing signal 

quality and detecting artifacts in the arterial blood 

pressure (ABP) signal.  The technique was tested using 

cases from a physician-annotated patient monitoring 

signal database from Beth Israel/Harvard-MIT University 

data bank.  The results were encouraging: 90% of the 

manually annotated artifacts were correctly classified as 

artifacts and 99% of the manually annotated true events 

were correctly classified (out of a total of 683 manually 

annotated alarms). 

1. Introduction 

Alarms due to artifacts in monitoring signals reduce the 

efficacy of healthcare provision, especially in intensive 

and critical care units (ICU/CCU).  Thus, it is important 

to develop a method for identifying these false alarms 

(based on artifacts) versus actual alarms (due to real 

changes in a patient’s underlying physiologic state).  

Numerous systems have been developed for 

automatically analyzing patient monitoring signals. These 

systems have employed various methods ranging from 

traditional signal processing techniques such as frequency 

analysis, time-frequency analysis, and wavelet analysis 

[5][3][7] to techniques developed by Artificial 

Intelligence researchers [4][1]. Most of these systems use 

a single-signal model, or when multiple channels are 

analyzed, they are of the same type of signal – such as 

ECG signals from multiple leads.     However, there are a 

several important exceptions Error! Reference source 

not found.[8][9].  Tsien looked at a number of patient 

monitoring signals, including blood pressure, carbon 

dioxide, oxygen and heart rate, exploring a number of 

machine learning techniques for identifying artifacts and 

comparing single channel and multi-channel approaches.  

Zong, et al. developed a system for detecting artifacts in 

arterial blood pressure (ABP) signals by analyzing the 

relationship between the ABP signal and the ECG signals 

using a fuzzy logic approach to evaluate signal quality of 

the ABP waveform [9].  Both of these studies found that 

the multi-signal approach was more effective than simply 

analyzing the targeted signal. Although much could be 

said about the strengths and weaknesses of these various 

methods, the algorithm complexity was quite significant. 

 In the next section we shall describe a simple method 

that requires minimal computational power for exploiting 

the relationships among signals used in patient 

monitoring. In the third section we shall present 

experimental results that demonstrate the effectiveness of 

this method for detecting artifacts in ABP signals, and 

thereby reduce false blood pressure alarms. 

.  

2. Methods 

The fundamental premise of this study is that 

relationships among certain patient monitoring signals 

can be used to assess a particular signal (e.g., whether it is 

an artifact) in light of the behavior of other signals.  Here 

we will be relying on the correlation between ECG and 

ABP signals, using the ECG for examining the ABP’s 

fidelity. The proposed method represents the interaction 

of the monitored signals as morphograms and specifies 

rules for interpreting changes to these morpograms.  We 

use the term "morphogram" to describe the plotting of 

one signal versus another for a given period of time -- 

e.g., an ECG signal on the x-axis and the ABP on the y-

axis.    

We investigated if the ABP and the various ECG 

signals are highly correlated by determining if a 

characteristic morphology or signature is present.  The 

signature represents the correlated signals for a single 

heart beat.  Since the time period used is greater than one 

heart beat, significant departures from this signature can 

be seen on the morphogram plots. These departures 

indicate either a physiologically caused event or an 

artifact.  The underlying heuristic of the morphogram 

algorithm is that physiologically caused events are more 

likely to affect all signals, and thus there will be 

perturbations in all morphograms, whereas artifacts are 

more likely to affect only a single signal, and thus there 

will be perturbations only in the morphograms involving 

that signal.  Figure 1 shows a 12 second plot of a typical 

set of signals being monitored for a patient with 
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respiratory failure [6]. Figure 3 shows the three 

morphograms created using two of the ECG signals (II 

and V) and the ABP signal.  Each morphogram subplot 

has a well-defined shape that repeats itself with time as 

long as there are no artifacts and the patient is not 

undergoing any physiological changes.   Not only do the 

morphograms for each patient have a well-defined shape, 

but often the signatures of the two ABP-ECG 

morphograms and the ECG-ECG morphogram have 

characteristic shapes that can be generalized across 

patients. 

 

Figure 1   MCL1, II, and V ECG leads, ABP, PAP, 

PLETH, and RESP monitoring signals  

   

 

Figure 2 Morphograms of II, V, and ABP signals 

Since the ABP wave lags behind the QRS complex, 

the ABP-ECG morphograms will typically have the 

characteristic "L" shape (or backwards "L" shape).  

Assuming that the ABP value is mapped onto the Y-axis 

and the ECG value is mapped onto the X-axis, then when 

the ABP is at a low Y value, the ECG is approaching its 

maximum (or minimum), and similarly when the ECG is 

approaching its neutral value, the ABP is approaching its 

maximum.  This is what accounts for the characteristic 

"L" shape of the ABP-ECG morphograms.  On the other 

hand, the ECG-ECG morphograms trace out a pattern that 

lies along the diagonal, either at 45 degrees or 135 

degrees (usually as a bar or an oval).  This is because both 

signals reach their extremes (some point in the QRS 

complex) in unison. 

Any change in the pattern of a signal will be quite 

obvious in the morphograms using that signal, i.e., there 

will be a perturbation of each morphogram’s signature 

morphology.   Given that the signals are highly 

correlated, a change in all the morphograms probably 

indicates a physiologically caused event, whereas a 

change in the subset of the morphograms that have a 

single signal in common probably indicates an artifact 

(e.g., a mechanical problem for that signal).  Figure 3 

shows an example where all the morphograms (for the 

same patient) are perturbed because of physiological 

changes in the patient’s condition. 

 

Figure 3 Perturbations in all the morphograms  

Figure 4, on the other hand, shows the morphograms 

for a patient with pulmonary edema during a time period 

in which an artifact occurs in the ABP signal.  Note that 

only the morphograms that include the ABP signal are 

perturbed.    The morphogram for the two ECG signals 

retains its characteristic diagonal-oval shape, whereas the 

two morphograms in which the ABP signal is plotted 

against either of the two ECG signals are highly distorted.   

 

 

Figure 4 Non-consistent perturbations in the different 

morphograms  indicating an artifact 

This is a clear indication of an artifact presence in the 
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signal that is common to the second and third 

morphogram subplots, namely, the ABP signal. In order 

to exploit morphograms we need to describe how 

perturbations are determined. Ideally one could determine 

the "normal" morphogram signature, with limits, for a 

particular patient, and then detect when the pair of signals 

being traced significantly exceeds these limits. For 

example, the algorithm could determine the convex hull 

for the morphogram.  However, this is computationally 

expensive, and one of our goals has been to try to keep 

the algorithm as simple as possible.  Our method is to 

enclose the morphogram in a rectangle whose sides are 

parallel to the x and y axes, and then calculate the area of 

this rectangle.  The algorithm divides the 15-second 

period preceding the alarm into equal one-second, non-

overlapping segments and creates a morphogram for each 

segment.  Rectangular areas are computed for each 

segment.  The minimum and maximum rectangular areas 

for these segments are identified.  Finally, the ratio of the 

difference between the maximum and minimum areas to 

the minimum area is computed and compared to a 

threshold.  We interpret the alarm as an artifact if the ratio 

for the ECG pair of signals is below the first threshold 

and both ABP ratios (one for each ECG lead) are above a 

second threshold: 

(ratio_of_rect_areas(ecg1,ecg2)< threshold_ecg) &  

(ratio_of_rectr_areas(abp,ecg1) > threshold_abp) & 

(ratio_of_rect_areas(abp,ecg2) > threshold_abp) 

where ratio_of_rect_areas(s1, s2) is: 

(max_rect_area - min_rect_area) / min_rect_area 

The following examples (for a patient with respiratory 

failure) illustrate how the algorithm works, using the two 

ECG leads (II and V) and the ABP signal. Figure 5 shows 

the signals being monitored during the period of an alarm 

that has a physiological cause. Figure 6 shows the three 

morphogram subplots.  Each subplot includes the 15-

second morphogram (in blue) and the fifteen 

encapsulating rectangles (in red).  (For purposes of easy 

visualization, the rectangles have been shifted so that 

their lower left hand corners lie at the same point.)   In a 

case where at least one signal is unstable there will be a 

lot of variability in the areas of the rectangles.  There are 

significant changes in all the morphograms, indicating the 

presence of changes not only in the ABP signal, but also 

in the ECG signals over the period of study. In the second 

example the alarm is caused by an artifact (Figures 7 and 

8).  In the morphograms there are significant changes in 

only two of the morphogram subplots – the 2
nd

 and 3
rd

, 

which are the ones involving the ABP. It should be noted 

that the morphogram heuristic has an inherent 

weaknesses---if there is an ABP artifact at the same time 

that there is significant noise in the ECG signal, then the 

algorithm will interpret the alarm as having a 

physiological cause. In order to deal with this problem, 

two additional rules were added to the morphogram to 

identify fairly obvious cases of ABP artifacts. This leaves 

the more subtle cases to the morphogram rule. The first 

rule classifies the ABP signal as an artifact whenever 

there is a stretch of more than L consecutive sample 

values that are equal due to saturation. The second rule 

classifies the ABP signal as an artifact whenever the ABP 

signal range has narrowed for a sustained period of time 

due to overdamping.  

 

Figure 5 Monitored signals for the period starting 20 

seconds before and ending 4 seconds after the alarm 

 

Figure 6 Morphograms for a physiologically caused 

ABP-based alarm 

3. Results 

We tested the morphogram algorithm on the publicly 

available MIMIC-I (Beth-Israel Hospital) data base [6] 

using the artifact annotations provided by Zong  [9].  We 

used the following parameter settings for the three rules:  

the morphogram rule with ECG and ABP threshold 

settings of 0.8 and 1.7, respectively, the rule for detecting 

saturation with a threshold of 15, and the rule for 
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detecting overdamping with thresholds of 8 mmHg and 

250 samples. (The results were similar for a wide range of 

parameters we tested, indicating that the algorithm is 

quite robust.). Out of 160 manually annotated artifacts, 

the morphogram algorithm detected 144 (as artifacts) and 

missed 16 (i.e., classified them as true alarms whereas 

they had been manually annotated as artifacts).  Out of 

523 manually annotated true alarms, the algorithm 

classified 518 as true alarms and 5 mistakenly as artifacts.  

Thus, for this experiment the sensitivity was 90% and the 

specificity was 99%. 

 

Figure 7 Monitored signals for the period starting 20 

seconds before and ending 4 seconds after the alarm 

 

Figure 8 Morphograms for an ABP-based alarm 

caused by an artifact 

4. Discussion and conclusions 

In this paper we have presented an algorithm that 

detects artifacts in ABP signals via morphograms, where 

abnormalities in the signals show up as perturbations in 

morphogram shapes.  A simple method was developed for 

classifying these perturbations as either caused by clinical 

conditions or by artifacts and was tested for detecting 

ABP artifacts using a physician-annotated database with 

encouraging results. Finally, it should be stressed that the 

morphogram algorithm is not limited to detecting artifacts 

in ABP signals, but can easily be applied to other signals. 
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