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Abstract

In this paper, we present a simulation study that aims

at estimating parameters of a hemodynamic model using

observable data typically available in an Intensive Care

Unit (ICU). Tracking model parameters in time reveals

disease progression, and hence can be very useful for pa-

tient monitoring purposes. However, the observable data

is generally not rich enough to allow for reliable estima-

tion of all parameters of the underlying model. This leads

to an ‘ill-conditioned’ estimation problem. To overcome

this ill-conditioning, we employ subset selection to identify

the ‘well-conditioned’ parameters that can be estimated

robustly. We attempt to estimate only these parameters

while the rest are fixed at prior values. Our results indi-

cate that focusing on the reduced-order estimation prob-

lem improves the reliability of the estimates by more than

50%; the scheme is capable of recovering the underlying

well-conditioned parameters with reasonable accuracy in

both steady-state and transient conditions.

1. Introduction

Modern ICUs are equipped with many patient monitor-

ing devices, each continuously recording signals from the

human body. Currently, these signals need to be inter-

preted by a clinician in order to assess the state of the pa-

tient, to formulate physiological hypotheses, and to deter-

mine treatment options. In some areas, such as hemody-

namic monitoring, enough quantitative knowledge about

the underlying physiological system is available to formu-

late computational models capable of simulating normal

and abnormal human physiology. Through tuning, such

models could be used to track patient states automatically

thus relating properties of the observable data streams di-

rectly to the properties of the underlying cardiovascular

system. Frequently, however, the observable signals are

not rich enough to allow for accurate estimation of all the

model parameters. This leads to an ill-conditioned esti-

mation problem in which the parameter estimates become

very sensitive to the noise in the data. To overcome the ill-

conditioning, we employ subset selection, a methodology

that improves the conditioning of the estimation problem

by reducing its dimensionality. Subset selection identifies

those well-conditioned parameters that have strongly in-

dependent effects on the model output, and thus can be

estimated robustly. Attempting to identify only the well-

conditioned parameters while the ill-conditioned ones are

fixed at prior values greatly improves the reliability of the

reduced-order parameter estimates [1].

To evaluate the subset selection-based estimation algo-

rithm in an ICU setting, we conducted a simulation study

during both steady-state and transient conditions that used

single-cycle waveforms of Arterial Blood Pressure (ABP),

Central Venous Pressure (CVP), and Pulmonary Arterial

Pressure (PAP) as observable data in a bid to recover pa-

rameters of an underlying model.

2. Cardiovascular model

Computational models of the cardiovascular system

are conveniently represented in the form of their circuit

analogs where pressure P (t) maps to voltage, flow q̇(t)
to current, and blood volume Q(t) to charge. The com-

putational model used in our studies is based on Davis’

work [2] and is shown in Figure 1. The model comprises

six compartments representing the left and right ventri-

cles (l, r), the systemic arteries and veins (a, v), and the

pulmonary arteries and veins (pa, pv). The ventricles are

modeled by time-varying compliances connected to inflow

and outflow resistances; diodes represent cardiac valves.

The rest of the compartments are each modeled by a linear

capacitor coupled with a linear resistor. Short-term car-

diovascular control was modeled in the form of the arte-

rial baroreflex and implemented as a set-point controller

that attempts to maintain mean arterial blood pressure by

modifying peripheral resistance, ventricular contractility,

venous tone, and heart rate. The implementation of the ar-

terial baroreflex is based on Davis’ extension of deBoer’s

work [2]. The appeal in using this model lies in its man-

ageable complexity and its ability to represent short-term

cardiovascular dynamics [2, 3].
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Figure 1. Circuit analog of the cardiovascular model. Pth

refers to the intrathoracic pressure.

3. Parameter estimation

3.1. Nonlinear least squares optimization

In the context of parameter estimation, nonlinear least

squares optimization arrives at estimates for the parameters

of an underlying model by iteratively minimizing the error

between the model output and the experimental data. Let

r(θ) = ŷ(θ) − y

denote the residual error, where ŷ(θ) ∈ Rn corresponds

to the model output, which is a function of the parameter

vector θ ∈ Rm, and where y ∈ Rn refers to the observa-

tion (or data) vector. The cost function we try to minimize

is the sum of squares of residual errors

Φ(θ) =
1

2
(rTr) (1)

Approximating the cost function by its second-order

Taylor series expansion around the current best estimate,

θi, and attempting to minimize this approximation yields

the following equation (see [4] for a detailed description

and derivation):

H(θ)|θi
· (θi+1 − θi) = −J(θ)T r(θ)|θi

(2)

where J ∈ Rn×m is the Jacobian (or gradient) matrix of

the error vector with respect to the parameter vector:

Jij =
∂ri(θ)

∂θj

and H ∈ R
m×m is the Hessian matrix of second-order

partial derivatives of the cost function with respect to the

parameter vector:

Hij = (JT J)ij +
n∑

l=1

rl ·
∂2rl

∂θi∂θj

In the presence of small residuals, the Gauss-Newton

approximation to the Hessian states that the terms contain-

ing the residuals can be ignored, thus giving the following

approximation:

Hij = (JT J)ij

Substituting the Hessian matrix with its approximation in

Equation 2 yields the following equation:

JT J · (θi+1 − θi) = −JT r (3)

Equipped with an initial estimate θ0, Equation 3 can be

solved iteratively until an pre-defined exit criterion is ob-

tained.

To illustrate the problem of ill-conditioning, we follow

the reasoning presented by Burth and co-workers [1]. If

the matrix J is rank-deficient, it has at least one eigen-

value at zero; its column space does not span the entire

R
m space. Consequently, the parameter update vector can

be arbitrarily varied in the direction of any ϑ that belongs

to the null-space of J , without affecting the error criterion

to first order:

JTJ · (θi+1 − θi + ϑ)

= JTJ · (θi+1 − θi) + JTJ · ϑ

= JTJ · (θi+1 − θi)

= −JTr

Thus, if J is singular, then the model parameters are

not uniquely determinable from the available observa-

tion data; such an estimation problem is said to be over-

parameterized.

Typically though, J is not exactly singular, but nearly

so, with its largest singular value much greater than its

smallest. Nearness to singularity is measured by the con-

dition number, κ(J), which, for real and symmetric ma-

trices, is given by the ratio of the largest to the small-

est eigenvalues. This nearness to singularity gives an ill-

conditioned problem, in which small numerical errors or

noise in the underlying data can radically modify the solu-

tion. To overcome the problem of ill-conditioning, we turn

to subset selection to determine which parameters should

be discarded from the estimation formulation in order to

improve the conditioning of the problem.

3.2. Subset selection

Conceptually, subset selection is a two-step process.

The first step determines ρ, the number of parameters that
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can be estimated robustly from the available data; the sec-

ond step determines which ρ parameters can be identi-

fied. The number of well-conditioned parameters is de-

termined from the structure of the Hessian eigenspectrum:

if the Hessian eigenspectrum contains ρ large eigenval-

ues and m − ρ small ones, then this indicates that the

Hessian has a numerical rank of ρ, and that only ρ pa-

rameters should be included in the estimation formulation.

A QR-decomposition with column pivoting or a singular

value decomposition of the Hessian matrix can be used to

determine which ρ parameters should be included in the

reduced-order estimation problem [5]. The subsequent es-

timation problem involves the use of reduced-dimension

Jacobian and Hessian matrices, indicated by Jρ and Hρ,

respectively. Jρ contains ρ columns of the original Jaco-

bian matrix that are strongly independent. This selection

results in a small condition number for Jρ and Hρ.

When applied to the problem of estimating cardiovascu-

lar parameters using single-cycle waveforms of ABP, CVP,

and PAP, the subset selection algorithm returned the fol-

lowing well-conditioned or “active” parameters:

1. Distending blood volume (DBV )

2. Peripheral resistance (Ra)

3. Right end-diastolic compliance (Ced
r )

4. Description of the estimation problem

As we are interested in judging the performance of the

estimation algorithm, we must know the true values of the

underlying parameters. We therefore used our computa-

tional model to produce synthetic target data, which were

then treated as measurements to which we applied the esti-

mation algorithm.

We attempted to estimate the well-conditioned param-

eters in both steady-state and transient conditions. For

the estimation problem using steady-state data, we gen-

erated target data using randomized parameters: each pa-

rameter, θi, was perturbed using a Gaussian distribution

N(θ0
i , 10%θ0

i ), where θ0
i is the nominal parameter value,

to simulate a target data. In an attempt to investigate the

benefit of using subset selection, this target data was used

in two different estimation schemes. In the first scheme,

only the active parameters were estimated while the rest

were fixed at their nominal values. In the second one, all

the parameters were estimated, i.e. subset selection was

not applied.

Next, we generated transient data by simulating sev-

eral cases of hemorrhage each lasting 30 minutes. The

data was generated using the same randomization scheme

as outlined above. In addition, each waveform was per-

turbed with additive noise from a Gaussian distribution

∼ N(0, 1.7%mi), where mi refers to the cycle-average

of the waveform, in order to assess the robustness of the

resultant parameter estimates.

5. Results and discussion

Table 1 summarizes the relative errors incurred in esti-

mating the active parameters from steady-state waveform

data under a full-order estimation scheme and a reduced-

order subset selection-based estimation scheme. For the

full-order scheme, 50% of the runs failed to converge,

whereas all the trials converged for the subset selection-

based scheme. Moreover, we observe that reducing the di-

mensionality of the estimation problem improves the mean

reliability of the active parameter estimates from an aver-

age relative error of 13.8% to 6.9%. The average relative

error incurred in estimating the non-active parameters un-

der the full-order estimation scheme was 14.9%.

Table 1. Relative estimation error for the active parameters

using steady-state waveform data.

Estimation problem

Parameter full-order reduced-order

(mean ± st. dev.) (mean ± st. dev.)

DBV (13.3 ± 11.4)% (6.4 ± 4.8)%

Ra (16.1 ± 10.2)% (7.4 ± 5.8)%

Ced
r (15.3 ± 10.7)% (7.1 ± 7.1)%

Table 2 summarizes the relative errors incurred in the

estimation process using the hemorrhage data. The results

show that the algorithm performs well in recovering the un-

derlying active parameters from transient data with a mean

estimation error of less than 8%. In Figure 2, we display

Table 2. Relative estimation error for the active parameters

using transient data.

Parameter (mean ± st. dev.)

DBV (4.1 ± 3.0)%

Ra (1.6 ± 1.4)%

Ced
r (7.7 ± 8.1)%

the individual estimation results for the hemorrhage data,

where we have used a first-point calibration at the begin-

ning of each hemorrhage simulation to obtain absolute val-

ues for the peripheral resistance Ra [3]. The correlation

coefficients for the three active parameters are 0.98, 0.97,

and 0.54 for ∆DBV , Ra, and Ced
r , respectively.

The estimation errors that occur when recovering the re-

duced set of parameters are mainly due to the bias intro-

duced by fixing the values of the ill-conditioned parame-

ters. In an attempt to reduce the error between model out-

put and observable data, the estimation algorithm distorts

the active parameter estimates in order to compensate for

the fixing of the ill-conditioned parameters.
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Figure 2. Estimated vs. actual parameter values.

6. Conclusions

Our simulation results indicate that the use of subset se-

lection to identify and estimate only the well-conditioned

parameters significantly improves the reliability of the es-

timates. The algorithm was able to recover the active pa-

rameters reasonably well in both steady-state and transient

conditions and therefore holds promise for tracking hemo-

dynamically important parameters in an ICU setting. Fu-

ture work will focus on the use of real patient data to eval-

uate the estimation algorithm.
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