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Abstract 

Several studies have focused attention on cardio-

respiratory function as an important indicator of 

development in infants. In the preterm infant, however, it 

remains unclear whether respiratory activity already 

affects heart beat variations at such an early development 

stage. In this work we investigate the presence of cardio-

respiratory coupling in preterm infants by quantifying the 

interaction between heart rate variability and respiration 

using multivariate autoregressive analysis. We evaluated 

the frequency domain indices using standard methods. 

Results show a significantly higher coupling, as 

confirmed by surrogate data analysis, in the frequency 

range associated with regular breathing compared to 

other ranges. These observations indicate a mild, but 

present, respiratory sinus arrhythmia in preterm infants. 

 

1. Introduction 

Cardio-respiratory interaction has been considered an 

important indicator of development in infants; however it 

is unclear whether such interaction exists in preterm 

infants. There have been reports in the literature about the 

presence [1,2] as well as absence [3,4] of interaction 

between heart rate variability (HRV) and respiration 

(RESP) in preterm infants, known as respiratory sinus 

arrhythmia (RSA). It has also been reported that heart 

rate fluctuations may exist at the respiratory frequencies 

even in the absence of respiration [5]. It has been 

suggested that HRV is reduced in preterm infants [6] and 

the interaction between HRV and respiration may be 

weak.  We here investigate the presence of RSA by 

means of standard frequency domain analysis using a 

multivariate autoregressive model. Furthermore we study 

the significance of such an interaction by performing 

surrogate data analysis. 

 

2. Methods 

Detection of R-wave peaks  

Ten infants with post-conceptional age between 30 and 

35 weeks have been used for the analysis. For each 

subject, we analyzed 1.5 hours of ECG recordings with 

relatively less artifacts for detecting the peaks. The R-

wave peaks were detected using a derivative and 

threshold algorithm. The peak to peak (RR) series from 

each segment was visually inspected and corrected for 

any artifacts or erroneously detected peaks. To improve 

the detection, we applied a fourth order band-pass zero-

phase Butterworth filter. The RR series, together with the 

corresponding respiratory signals from respiratory 

inductance plethysmography, were interpolated and 

resampled at 3 Hz.  For each of the 10 subjects, we chose 

three epochs of approximately 500 seconds duration from 

the cleaned data sets. 
 

Frequency domain analysis  

Frequency domain analysis was performed on each of 

the epochs using a bivariate autoregressive model [7]. 

After preliminary optimal model order analysis, we 

considered a fixed autoregressive order of 32 for all 

epochs. We computed the bivariate autoregressive 

parameters and the noise variances, and also computed 

the RR and RESP power spectral densities, the RR- 

RESP coherence, and the RESP to RR (RSA) gain. As 

reported in the literature [2,4], the standard LF and HF 

frequency ranges classified for adult HRV analysis do not 

apply in the infant case. Generally, any frequency above 

0.2 Hz has been classified as high frequency in the case 

of infant HRV. However, an agreement on a standard 

classification has not yet been reached. In this study, 

starting from the observation that our preterm infants 

have a predominant breathing frequency around 1Hz, we 

decided to introduce a more refined characterization of 
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the respiratory range, up to the Nyquist frequency, by 

subdividing the HF range in three different regions, 

thereby classifying in total four different frequency 

ranges: the Low Frequency (LF: 0.01-0.15Hz), High 

Frequency (HF: 0.15-0.45 Hz), the Super High Frequency 

(sHF: 0.45-0.7Hz) and the Ultra High Frequency (uHF: 

0.7-1.5Hz).  

 

(A) 

 
(B) 

(m
s/
m
v
)

(m
s2
/H

z)

 
Figure 1. (A) RR and respiration time series from one of the 500s 

epochs used for the analysis and (B) the correspondent frequency 

domain measures. The small circles indicate the maximum coherence in 

each frequency range.  Gains are computed at maximum coherence. 

 

Surrogate data analysis 

The significance of the coherence function is 

determined by setting a threshold using surrogate data 

analysis [8,9]. For each epoch we generated an ensemble 

of 50 pairs of Fourier Transform (FT) surrogate time 

series and calculated the coherence function. The FT 

surrogates were constructed by computing the Fourier 

Transform of the original time series and then 

randomizing the phases, while keeping the magnitude 

unchanged.  We set the threshold level at the 95th 

percentile of the coherence sampling distribution. Any 

coherence value above threshold is significant. 

3. Results 

Frequency domain analysis  

Figure 1 shows results from a single 500s epoch. Note 

the irregular breathing patterns in the time series 

including clear apnea episodes (i.e., pauses in breathing). 

These irregularities are reflected in the absence of a clear 

peak in the RESP spectral density distribution, with lower 

powers in the sHF and uHF ranges, as well as very low 

values of coherence in all frequency ranges. 
 

To further stress the importance of breathing patterns 

in cardio-respiratory coupling, Figure 2 shows results 

from a 200s sub-segment in which the infant is breathing 

regularly. In this case, the RESP power spectral density 

(PSD) shows clear high peaks in the infant’s natural 

breathing frequency range, between 1Hz and 1.3 Hz. 

Importantly, the RR spectrum also reveals substantial 

oscillations in the sHF and uHF ranges.  
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Figure 2. (A) RR and respiration time series from an infant during 

regular breathing (200s interval) and (B) the correspondent frequency 

domain measures. The small circles indicate the maximum coherence in 

each frequency range.  Gains are computed at maximum coherence. 
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Furthermore, when compared to the previous example 

of irregular breathing pattern, significantly higher values 

of coherence in the uHF and sHF ranges are accompanied 

by higher values of RSA gain in the presence of a regular 

breathing pattern. Of note, of all 500s segments 

considered, none presented continuous regular pattern. In 

fact, most of the breathing patterns are irregular with 

wide range of periodicities and frequent occurrence of 

apnea episodes.  

0

10

20

30

40

50

60

LF HF sHF uHF

Gain

A

B

0

0.1

0.2

0.3

0.4

LF HF sHF uHF

Coherence

0

10

20

30

40

50

60

70

80

LF HF sHF uHF

To
ta
l P

o
w
e
r
(m

s^
2
)

RR

0

0.002

0.004

0.006

0.008

0.01

0.012

LF HF sHF uHF

To
ta
l P
o
w
e
r (
A
.U
)

RESPIRATION

C

D

 
Figure 3. Total power in different frequency ranges for (A) RR and (B) 

respiration. (C) Coherence and (D) gain between RR and respiration.  

Indices are averaged for all epochs and all subjects. Bars indicate 

standard errors. 

 

Results were averaged along all epochs and all subjects 

for each frequency range and are summarized in Figure 3. 

The RR distribution of power (A) decreases 

exponentially as frequencies get higher, indicating a 

generally very irregular modulation of heart beat 

variations. In contrast, higher respiratory uHF power than 

sHF power point at the presence of regular breathing 

patterns (B). It is in this very range that the coherence 

value is larger than the other frequency ranges (C). The 

uHF coherence is significantly higher compared to HF 

with a p-value of 0.01 and marginally higher than LF and 

sHF, with a p-value of 0.076 and 0.074 respectively. 

Coherence values are the lowest in HF, whereas gain 

values are the highest in the LF range (not significant). 
 

Surrogate data analysis 

Figure 4 represents the coherence function (blue) along 

with the 95% threshold function (green) computed by the 

surrogate data analysis procedure for one 500s epoch . In 

this example the maximum coherence in the sHF and 

uHF ranges is far greater than the threshold function, and 

generally over the threshold in the LF range. On the other 

hand, the coherence function lies mostly below the 

threshold in the HF range.  

 
Figure 4. Example of surrogate data analysis of coherence function 

(blue line) with 95% percentile threshold (green line).  

Subject  LF HF sHF uHF

1 ど ど ど ど
2 0.29 0.14 0.25 0.35

3 0.17 0.31 0.18 0.2

4 ど ど ど 0.43

5 ど ど ど ど
6 ど ど ど ど
7 0.24 0.16 0.15 0.17

8 0.15 0.2 0.28 0.36

9 ど ど ど ど
10 0.2 0.13 0.23 0.29

 
TABLE I. Surrogate data analysis summary. Only significant 

coherences are reported. 

 

In Table I, coherence values are averaged for each 

subject in each frequency range whenever at least one 

epoch showed significance according to surrogate data 
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analysis. We found significant coherence levels in all 

frequency ranges in five infants, with generally higher 

values in the uHF range. One additional subject (Subject 

4) showed a high and significant level of coherence in 

this range as well. 

 

4. Discussion and Conclusions 

Our results point at a clear presence of RSA in 60% of 

the subjects. This outcome is important, also considering 

that it was achieved without limiting the analysis to 

shorter segments including only regular breathing 

patterns. However, significance levels were not observed 

in four of the ten infants. Although there is interaction 

between heart rate and respiration, these interactions are 

not continuous as in adults, and/or may develop later in 

some infants.  

 This preliminary analysis does not provide a final 

answer to the conflicting reports in the literature about 

the presence of RSA in preterm infants, but it is an 

encouraging starting point for our investigation. One 

limitation is that we employed a bivariate model that is 

suitable for stationary data set, thus assuming that each of 

the 500s segments is stationary; however there are 

nonstationary events in these segments, particularly 

associated with apnea. In an immature system, both the 

cardiovascular and respiratory mechanisms may exhibit 

transient synchronization, but due to system vulnerability, 

the interactions are fast-changing and impersistent. To 

understand such changes we need a model which 

estimates the parameters in a time varying manner.  

A second limitation is that we derived a continuous 

representation of RR using an interpolation method. The 

low HRV in these preterm infants requires a fine time 

resolution, and a simple interpolation may not accurately 

represent the real dynamic process associated with RR 

variations. A point process model along with respiration 

as one of the covariates [10] may provide a more accurate 

determination of cardio-respiratory coupling, and this 

work is in progress.  
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