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Abstract 

Increasing biophysical detail in multi physical, 

multiscale cardiac model will demand higher levels of 

parallelism in multi-core approaches to obtain fast 

simulation times. As an example of such a highly parallel 

multi-core approaches, we develop a completely 

distributed bidomain cardiac model implemented on the 

IBM Blue Gene/L architecture. A tissue block of size 50 x 

50 x 100 cubic elements based on ten Tusscher et al. 

(2004) cell model is distributed on 512 computational 

nodes. The extracellular potential is calculated by the 

Gauss-Seidel (GS) iterative method that typically 

requires high levels of inter-processor communication. 

Specifically, the GS method requires knowledge of all 

cellular potentials at each of it iterative step.  In the 

absence of shared memory, the values are communicated 

with substantial overhead.   We attempted to reduce 

communication overhead by computing the extracellular 

potential only every 5
th

 time step for the integration of the 

cell models.  We also investigated the effects of reducing 

inter-processor communication to every 5
th

, 10
th

, 50
th
 

iteration or no communication within the GS iteration.  

While technically incorrect, these approximation had 

little impact on numerical convergence or accuracy for 

the simulations tested. The results suggest some heuristic 

approaches may further reduce the inter-processor 

communication to improve the execution time of large-

scale simulations. 

1. Introduction 

While CPU power has followed Moore’s Law since 

the 1970s, the consensus is that clock speeds will not 

appreciable increase in the foreseeable future with current 

silicon technology. In light of this, further increases in 

computation power will demand higher levels of 

parallelism in multi-core approaches.  In tissue-level 

cardiac models, the parallelism will require distribution 

of workloads, generally based on volumetric 

decomposition of the heart tissue itself. The balancing of 

computational load and inter-processor communication 

become paramount in a highly distributed environment 

where memory is not shared between all processors 

(typical in non-SMP machines such as clusters).  We 

present such an example with bidomain tissue-level 

cardiac models implemented on the Blue Gene/L 

architecture.  Standard bidomain calculations [1] require 

knowledge of the electrical potential at all points in the 

3D mesh, and hence, the results demonstrate an important 

use case in a completely distributed environment that 

does not permit data coalescence into a commonly-shared 

memory space that is typical in existing implementations. 

2. Methods 

We model a tissue block of size 50 x 50 x 100 cubic 

elements is used a test case for the algorithm 

development and testing. Computation is distributed on 

512 computational nodes of an IBM Blue Gene/L 

supercomputer with distributed memory. A single 

stimulus is set to create a propagating wave front per run. 

The ten Tusscher et al. cell model [2] and the bidomain 

equations are solved for heterogeneous anisotropic tissue 

by the Saleheen et al. [3, 4] formulation.  

The extracellular potential is calculated by the Gauss-

Seidel (GS) iterative method using either the global sum 

of squared residuals (gSSR) across all computational 

nodes with gSSR < 10
-6
 as termination criterion or if a 

maximum number of iterations is reached. The gSSR is   

caluculated as shown below 

gSSR =

φe

t−1 itotal( )− φe

t itotal( )( )
itotal =1

N total

∑
2

φe

t−1 itotal( )( )
itotal =1

N total

∑
2

   (1) 
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where extracellular potential Φe of element itotal in the 

global volume at time t and (t – 1), respectively and Ntotal 

is the total number of elements in the whole simulation. 

We were also interested in the behavior of two further 

convergence criteria that could potentially reduce 

communication in the GS iterations.  A local SSR (lSSR) 

disregarding the SSR values of other subvolumes would 

allow to compute the convergence criterion locally only 

and would not introduce a communication overhead for 

its computation. The lSSR is computed with 

 

lSSR =

φe

t−1 isub( )− φe

t isub( )( )
isub =1

Nsubvolume

∑
2

φe

t−1 isub( )( )
isub =1

N subvolume

∑
2

   (2) 

where Nsubvolume is the total number of elements in the 

local subvolume and isub denotes the i
th
 element in the 

local subvolume.  

As an intermediate case, we compute the global sum 

of local SSRs (gSlSSR) by 

 

gSlSSR =

φe
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p=1

N proc

∑   (3) 

with the total number of processors Nproc and the total 

number of elements in the local subvolume Nsubvolume. isub 

denotes the i
th
 element in the local subvolume.  Thus the 

inter-processor communication during iteration can be 

reduced by factor 2 for the computation of the 

convergence criterion.  

Figure 1 shows a flow chart of the computation and 

communication cycle of the computation. After each GS 

iteration, the ghost values of the extracellular potential 

for each subvolume need to be updated since Blue Gene 

is a distributed memory parallel supercomputer (see fig. 

1). A further reduction in communication overhead can 

be achieved if this communication phase is not carried 

out at each iteration but for every fifth, tenth iteration or 

not at all. A calculation error might be introduced. We 

investigate this error by calculating a root mean square 

error (RMSE) of transmembrane voltage and extracellular 

potentials. The reference values of the extracellular 

potentials are given by the simulation with a 

communication phase after each GS iteration.  At the end 

of each simulation, the extracellular potential is saved 

and the RMSE is computed. 
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Fig. 1.  Communication cycles in the simulations per time 

step. The transmembrane potential Vm is computed after 

initialization. The values of Vm at the boundaries between 

compute nodes are then communicated to compute the 

current density I(Vm). Given the monodomain case, the 

Vm at the next time step is calculated. Given the bidomain 

case, the extracellular potential Φe is calculated by way of 

Gauss-Seidel method which requires an unknown number 

N of communication cycles depending on the number of 

iterations needed. This number is determined by either a 

maximum number of iterations or by checking the sum of 

squared residuals (SSR) against a threshold for 

convergence. Then the current density I(Φe) can be 

computed before starting the iteration for the next time 

step. 

In simulation run of 1 sec requires 10000 steps fixed at 

time interval of 100 µs.  The small time step is required 
for numerical stability of the cell model.  The 

extracellular potential is calculated at each every fifth 

time step (a commonly used heuristic to reduce 

communication overhead).  

The communication framework is build with standard 

MPI functions. The communication is synchronized by 

non-blocking send and receive functions used in 
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conjunction with the wait function. A communication list 

is created based on an orthogonal recursive bisection 

(ORB) algorithm that decomposes the tissues distributes 

to multiple processor in a manner to balance 

computational loads. The complete description of the data 

decomposition and communication is found in [5, 6]. For 

the computation of the SSRs, all-reduce functions were 

used since the gSSR and gSlSSR are functions over the 

whole data volume and not restricted to the subvolume 

allocated to each computational node.  

3. Results  

Figure 2 and 3 show the total run time as well as the 

respective computation and communication times for 

each simulation. If Φe is calculated every time step, the 

run times increase when reducing the communication 

phases during the GS iteration (fig. 2). A reduction of 

communication phases by factor 10 leads to an increase 

in run time by about factor 5. 
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Fig. 2.  Average computation and communication times 

and total run time as function of the number 

communication phases per GS iteration. The extracellular 

potential was computed every time step Simulations 

limited communication phase in the GS method each 

iteration, every 5
th
, 10

th
, 50

th
 iteration or no 

communication. The maximum iteration number allowed 

is 100. The times are labels on the graph. 

 

In contrast, the simulations where Φe was computed 

only every 5
th
 time step show the expected result. A 

decrease in run time from 481 s to 415 s when the 

communication phases in the GS iteration was reduced 

(fig.3). The run time is also substantially reduced when 

the extracellular potential is computed every 5
th
 versus 

each time step.  This reduction can be seen by comparing 

total run times (red traces) in Figs. 2 and 3.   

Counting the total number of GS iterations for a 

simulation, i.e. taking the sum of all GS iterations at each 

time step, the simulations in fig. 2 show an increase from 

around 23000 (communication phases every and every 5
th
 

GS iteration) iterations to over 10
5
 iterations for the cases 

with communication phases less than every 10
th
 GS 

iteration. While the communication phase is reduced in 

the latter cases, the computation overhead leads to the 

increase in overall run time since the simulation is 

computation bound with little communication overhead. 

The simulations in fig. 3 show a decrease in total number 

of GS iterations from about 11000 to less than 8000. 
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Fig. 3.  Average computation and communication times 

and total run time as function of the number 

communication phases per GS iteration. The extracellular 

potential was computed every 5
th
 time step Simulations 

limited communication phase in the GS method each 

iteration, every 5
th
, 10

th
, 50

th
 iteration or no 

communication. The maximum iteration number allowed 

is 100. The times are labels on the graph. 

 

Note that the results are essentially the same whether 

the maximum number GS iterations per time step is 

limited to 100 or 1000. This effect is investigated in Fig. 

4.  Here the number of GS iterations per time step is 

shown for the first 0.1 s in the simulation; the different 

color traces correspond to limiting inter-processor 

communication to every 5
th
, 10

th
, 50

th
 GS iteration or no 

communication as labeled.  The number of GS iterations 

quickly falls below 20 and seldom exceeds 10 after 20 ms 

simulation time as shown Fig. 4.  The solution converges 

at every time step when limiting the maximum number of 

iterations to 1000. 
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Fig. 4.  Iteration count per time step with maximum 1000 

iterations allowed for the simulation that the extracellular 

potential is computed every time step. 
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The lSSR has overall the same magnitude as the gSSR 

(fig. 5 and 6). The gSlSSR is magnitudes larger than both 

lSSR_ind and gSSR. Although the gSSR drops even 

lower than convergence threshold and remains below the 

lSSR, the latter also achieves values below the 

convergence threshold. However, it is interesting to note 

that while the gSSR remains low, the lSSR at times 

shows spikes and increases in values during the 

simulation.  
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Fig. 5.  This figure shows the lSSR (blue), gSlSSR (red) 

and gSSR (green) for the simulation with 100 iterations 

allowed and computation of Φe at every time step. 
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Fig. 6.  This figure shows the lSSR (blue), gSlSSR (red) 

and gSSR (green) for the simulation with 100 iterations 

allowed and computation of Φe at every 5
th
 time step. 

The RMSE of the transmembrane voltage Vm and the 

extracellular potential Φe were increased when reducing 

communication phases in the GS iterations. While 

reducing them by factor 10 the RMSE of Vm is of the 

order of 10
-5
. A reduction by factor 50 or more increases 

the error to 0.105. Increasing the maximum GS iteration 

steps did not change that result. The RMSE of Φe was in 

the order of 10
-3
 and a reduction in communication 

phases lead to an higher RMSE score in the order of 10
-2
. 

Computing Φe every 5 times steps produces a better 

result when the number of communication phases is also 

reduced. In his case, the RMSE values are in the order of 

by 10
-4
 and 10

-3
 for Vm and Φe respectively. 

Since communication is less expensive then 

computation with respect to wall clock time, an increase 

in communication has not a large effect on the overall run 

time. 

4. Discussion and conclusions 

While preliminary, our results illustrate that bidomain 

computation is feasible on a fully distributed memory 

system.  Moreover, the results suggest some heuristic 

approaches may further reduce the inter-processor 

communication to improve the execution time of large-

scale simulations.  Especially the local convergence 

criterion seems promising. Since the global convergence 

criterion usually remains below the local criterion after 

the initial phases of the simulation, the GS method can be 

assumed to converge if the local convergence is 

guaranteed. Moreover, the results suggest some heuristic 

approaches may further reduce the inter-processor 

communication to improve the execution time of large-

scale simulations.  

Future work will focus on simulating large anatomical 

data-sets on system sizes greater than 1024 processors to 

enable fast simulation of cardiac models on organ level 

including detailed electrophysiological and models. 
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