
Data Compression for Implantable Medical Devices

LA Koyrakh

St. Jude Medical, St. Paul, MN, USA1

Abstract

Introduction: Implantable devices have limited mem-

ory, computationaland battery power resources, while col-

lecting, processing and transmitting out information from

potentially many sensors. These limitations require that

information within the devices be efficiently compressed.

Such data compression presents a challenging task, as it

must provide high fidelity of the waveform reproduction

and high compression ratios on limited size data frames.

Also, it must efficiently run on ultra low power hardware,

and allow flexible configuration, based on the type of data

to be compressed. Methods: The new compression algo-

rithm was implemented as a bit accurate Matlab simula-

tion, consisting of the following major steps: 1. Integer

wavelet transform. 2. Quantization coupled with filtra-

tion. Two selectable quantization schemes could be uti-

lized based on the signal properties: linear and dead-zone.

Data filtration is performed on bit boundaries, which sim-

plifies hardware implementation. The filtration thresholds

are made different in different wavelet sub-bands, con-

trolled by a single parameter. 3. Original adaptive data

encoding. Our approach only requires basic logical oper-

ations such as bit counters and shifts, and is highly opti-

mized for implementation in implantable device hardware.

For high reliability each compressed data frame contains

all information needed for decompression. Results: The

algorithm was applied to data from the PhysioNet ECG

compression test database. 40 ECG frames of 1024 sam-

ples from 4 patients were sampled at 250 Hz, 12 bit reso-

lution, and compressed with distortions below 8%. Com-

pression ratios were 9.3±2.5, consistently exceeding 85%
of the theoretical limit based on bit entropy for each in-

dividual data frame. Conclusions: The compression al-

gorithm is efficient on data collected by implantable de-

vices, and could be used in various applications in both

microprocessor and ASIC implementations, helping to re-

duce memory requirements and the battery energy spent on

the information transmission to and from the implantable

device.

1The work was performed by the author prior to joining the St. Jude

Medical. The IP belong to the author.

1. Introduction

Modern implantable medical devices could be viewed as

complex data acquisition, processing and communication

agents, designed to work for many years, powered by the

original battery. Data storage and transmission represents

one of the major challenges in designing such devices, re-

quiring dedication of substantial memory and power re-

sources. To meet this challenge, data within the device

must be sufficiently compressed. There exists a large body

of work dedicated to compression of cardiac signals (see,

for example, [1]-[4]). However, designing a compression

algorithm that is substantially efficient for an implantable

device implementation represents a major challenge. The

compression algorithm must be computationally inexpen-

sive while providing high compression ratios and high fi-

delity of the compressed waveform. In many applications

the problem becomes even more challenging due to lim-

itation imposed on the size of the data framed that must

be compressed and reliably transmitted. Because of these

limitations, the known efficient compression algorithms,

such as Huffman and arithmetic encoding [5], can not be

directly used [4]. These algorithms require relatively com-

plex statistical computations performed on the signal, and

have limited efficiency on small data frames.

The most efficient modern compression approaches are

wavelet transform-based. The first wavelet-based algo-

rithm implemented in an implantable device used Haar

transform to effectively compress the EGM morphology

information [6]. Here we propose a wavelet-based ap-

proach to compression, which is optimized for implantable

and other low power devices implementation. It requires

only very basic arithmetic and logical operations, such as

additions, counters and shifts. While being adaptive to the

information contained in the waveform, all statistical de-

cisions are based on simple number and bit counters. All

information needed for decompression is included with ev-

ery data frame, and compression is already efficient with

frames as small as 16 samples. The decompression algo-

rithm is also very efficient. While different variations of

the proposed approach could be used with different types

of waveforms, in this paper we report applications of the

compression algorithm to ECG signals.

ISSN 0276−6574 417 Computers in Cardiology 2008;35:417−420.



2. Compression algorithm

The flowchart of the compression algorithm is shown in

Fig. 1. The waveform data is usually available in a buffer

Figure 1. The flowchart of the compression algorithm.

of a certain length, and the samples could be viewed as

integers at a certain bit resolution. The data is processed in

the following major steps:

1. Wavelet transformation

2. Change of number representation

3. Quantization coupled with threshold application

4. First stage compression: number level

5. Second stage compression: bit level

Let us describe the steps listed above.

1. The wavelet transform used in this work is an in-

teger to integer transform known as the Integer or Lin-

ear Wavelet Transform or CDF(2,2) [5, 7]. In the lift-

ing scheme this transform uses very efficient integer arith-

metics: additions, subtractions and bit shifts (divisions by

2 and 4):

dk = x2k+1 − (xk + x2k+2)/2,

sk = x2k + (dk−1 + dk)/4,

where xk are the original waveform or smooth wavelet co-

efficients of the current scale, dk are the detail and sk are

the smooth wavelet coefficients of the next, coarser, scale.

Rounding errors of the direct transform are exactly com-

pensated by the rounding errors of the inverse one. Our

simulations showed that the Linear Wavelet Transform,

while being very computationally inexpensive, provides

sufficient smoothness of the compressed waveforms and

higher compression ratios than those of the Haar transform

[5]. This wavelet transform increases the bit bandwidth of

the signal by a single bit. For example, if the signal is sam-

pled with 12 bits resolution, then in the wavelet domain

each sample will be represented by 13 bits. Our simula-

tions showed that compression ratios saturate at about 5 to

6 transform stages. This observation allows data frame size

to be multiples of 64 or 128 correspondingly, which is a

much less restrictive condition than the power of 2 length,

and thus allows more flexibility in the system design.

2. So far all data samples, both in the time and trans-

form domains, were assumed to be integers, with negative

numbers in the standard twos complement representation.

If one assumes that wavelet coefficients could be negative

or positive with equal probability of 0.5, and absolute val-

ues of the majority of the coefficients are expected to be

small, then the counts of one and zero bits in this repre-

sentation are going to be somewhat similar. In order for bit

one to carry information about the smallness of the number

in which it is present, the wavelet coefficients are converted

into the following representation: The most significant bit

represents the sign, which is followed by the bits represent-

ing the absolute value of the number. For example, number

-5 in 8 bit representation will look as 10000101. By dra-

matically cutting the probability of bit 1 in the transform

domain, this representation facilitates the bit compression

algorithm proposed in this work.

3. Quantization and threshold application. Quantization

is the process of assigning integer numbers to the values

in the wavelet domain. Since the wavelet transform used

in this work is already integer, the linear scalar quantiza-

tion is trivial: no action taken. It becomes non-trivial if

a threshold is applied to the wavelet coefficients, which

effectively performs the mapping of integers to integers.

Another method known as dead-zone quantization, which

is also coupled with the threshold application, might pro-

vide some additional computational and compression ef-

ficiency. With this method the least significant bits of the

signal in the transform domain which are below the thresh-

old are set to zero, effectively reducing the dynamic range

of the signal. To reduce distortion due to compression

losses, different thresholds are used in different wavelet

subbands. In this work, for greater computational effi-

ciency, the thresholds are controlled by a single parameter:

the threshold in the finest scale wavelet domain. In each

adjacent domain containing the wavelet coefficients of the

next time scale, the corresponding threshold is chosen to

be half of the current one. If we denote the threshold of

a wavelet subband j as thj , then the threshold in the next

subband is given by the expression:

thj+1 = thj/2.

We have chosen the threshold in the subband correspond-

ing to the finest scale to be a power of 2, so that thresholds

418



in all other subbands are also powers of 2, making compu-

tation and application of such thresholds very efficient, as

all comparisons happen at bit boundaries of wavelet coef-

ficients.

4. The next two steps of the algorithm perform compres-

sion of the information contained in the quantized (thresh-

old applied) wavelet coefficients. The first compression

stage is the standard run-length encoding of numbers [5].

In order to further increase the compression ratio, the en-

coding is modified by replacing single isolated zeros with

ones. This substitution significantly increases compression

ratio without any noticeable deterioration of the signal,

since after application of a threshold that is greater than

one, the one and zero levels in the signal become indistin-

guishable.

5. The second compression stage is performed on bit

strings corresponding to the same bit levels across the data

frame which is being compressed. The only statistical

measure of such bit strings used in this work is the prob-

ability of bit one in it. Each bit string is adaptively run-

length encoded, with the length of the field containing the

number of consecutive zeros based on the probability of 1

in the string. The advantage of the chosen number repre-

sentation becomes evident at this stage: since most num-

bers are expected to have small absolute values, this rep-

resentation insures that ones are sparse and on most levels

the bit strings are mostly comprised of zeros, thus enabling

efficient run-length encoding. The length of the field en-

coding the number of consecutive zeros is very critical to

the code efficiency and is determined for each string ac-

cording to the following formula:

k = ceil(log2(1/p0)),

where k is the length of the encoding filed, p0 is the fre-

quency of zeros, and the ceil() function denotes the nearest

integers greater than or equal to its argument. This func-

tion could be efficiently implemented as a look up table,

based on bit counts in the string. The value of k is stored

in a fixed-length preamble to the encoded bit string. For

example, a 4-bit preamble can encode the maximal num-

ber of 16, meaning that 16 bits can be available to encode

the number of zero bits, which potentially could be used

to efficiently encode rather long strings. The length of

the preamble depends on the size of the data frame and

is added to the length of the compressed bit string, creat-

ing an additional overhead and reducing the compression

efficiency for short strings.

To illustrate this encoding, let us consider a toy example

of a frame consisting of 12 samples, each containing 5 bits.

Let us say they are 0,−3, 8,−1,−2, 0, 7, 3,−2, 0,−6, 1,
then in the number representation used, we have:

0 : 00000
−3 : 10011
8 : 01000
−1 : 10001
−2 : 10010
0 : 00000
7 : 00111
3 : 00011
−2 : 10010
0 : 00000
−6 : 10110
1 : 00001

The following bit strings will have to be encoded:

010110001010, containing all most significant bits

001000000000
000000100010
010010111010
010100110001, containing all least significant bits

The first string has about the same number of ones as zeros,

so the bit run-length encoding will not be applied. In the

second string the number of zeros is sufficient to use the

encoding, provided one allocates 4 bits for the encoding

field. The second string is encoded as follows:

00010101001,

which is one bit shorter than the original string. A fixed

length preamble (in this case 3 bits containing 100) with

information about the length of the zero encoding field has

to be added to each string, however. Simulations show that

compression is efficient on data frames starting at length

of 16.

The described run-length encoding of bit strings is sup-

plemented with another method, utilizing adaptive use of

fixed look up tables. The look up tables map combina-

tions of fixed numbers of bits into variable length bit fields,

which is similar to using Huffman encoding trees. For each

bit string a fixed encoding table is used. The particular ta-

ble used with a bit string is determined by the frequency of

ones p1 in that string. In our approach no statistical infor-

mation about different bit combinations is measured, and

probabilities of all sequences containing the same num-

bers of ones are considered the same. The following bit

probabilities for using different tables were determined in

simulations. If the frequency of ones is 0.21 < p1 ≤ 0.29,
then the following table is used:

[00]→ [0]; [10]→ [10]; [01]→ [110]; [11]→ [111].

If 0.16 < p1 ≤ 0.21, then each three consecutive bits are

encoded in a similar manner using the table containing 8

entries , and if 0.06 < p1 ≤ 0.16, each four bits are en-

coded using the table containing 16 entries. If p1 ≤ 0.06

419



then the adaptive bit run-length encoding described above

is used. The frequency ranges provided here were found

to be optimal in numerical simulations. The compression

method used is indicated in the preamble to each bit string.

The only statistical measure required in this procedure is

the bit count, so that no complex symbol statistical infor-

mation is computed. The compression ratio is saturated by

just three encoding tables for three distinct values of prob-

abilities of ones. The total memory required by all tables

is just 223 bits. This approach resulted in slightly greater

overall compression ratios for bit strings than using just

the adaptive bit run-length encoding, while having similar

computational efficiency.

3. Results

A bit-accurate simulation of the new compression algo-

rithm was implemented in Matlab and applied to ECG data

taken from the Physionet compression test database. The

ECG data was sampled at 250 Hz rate and encoded with 12

bit resolution. The algorithm performance was measured

on 40 frames from 4 different patient records.

The compressed waveform distortion was defined as the

Percent Root-mean-square Difference, PRD = 100% ∗(∑n
i=1(xi − x̃i)

2/
∑n
i=1 x

2
i

)1/2
, where xi are samples of

the original waveform, x̃i are samples of the compressed

waveform, and n is the number of samples in the data

frame. With PRD kept under 8%, the compression ratios,

defined as ratios of total numbers of bits in the original

and compressed waveforms, were 9.3 ± 2.5, consistently

exceeding 85% of the theoretical limit determined by the

bit entropy of the original data frames. Example frames

with the original and compressed waveforms are shown

in Fig. 2. These examples show the high fidelity of the

compressed waveform and demonstrate the dependence of

compression ratios on the content of the frames.

4. Discussion and conclusions

The new wavelet-based compression algorithm is com-

putationally inexpensive, while being versatile and effi-

cient, especially when applied to relatively small data

frames, which lack symbol statistics needed for effective

encoding by other methods. All information needed for de-

compression is included with every data frame. Bit accu-

rate simulations showed that the algorithm achieves com-

pression ratios close to those of it’s more sophisticated

and considerably more computationally expensive coun-

terparts. The algorithm could be used in various applica-

tions in both microprocessor and ASIC implementations,

helping to reduce memory requirements and the battery en-

ergy spent on the information transmission to and from the

implantable or other low power device.

Figure 2. The original (above) and compressed (below)

ECG frames sampled at 12 bits, 250 samples per second.

Combined adaptive fixed-table and bit run-length encod-

ing was used. Left: Rec No: 08730-02, compression ratio

= 13.1, PRD = 6.1%. Right: Rec No: 11442-01, compres-

sion ratio = 5.13, PRD = 6.4%.

Acknowledgements

I would like to thank my family and friends for all their

support during the work on this project.

References

[1] K Nagarajan, E Kresch. Constrained ECG Compression Using Best

Adapted Wavelet Packet Bases. IEEE Signal Processing Letters,

1996;3:273-275

[2] A. Molina, A. Urbaszek, J. Huber, M. Schaldach. A novel, low-

complexity method for intracardiac signal compression in im-

plantable devices. Proceedings of the 19th Annual International

Conference of the IEEE.1997;30:95-96

[3] P Rossi, A Casaleggio, M Chiappalone, M Morando, G Corbucci,

M Reggiani, G Sartori, E Borgo. Low Complexity Methods for

Intracardiac Atrial Electrogram Compression. Computers in Cardi-

ology 2000;27:565-568.

[4] HL Chan, YC Siao, SW Chen, SF Yu. Wavelet-based ECG com-

pression by bit-field preserving and running length encoding. Com-

puter Methods and Programs in Biomedicine. 2008;90:1-8 .

[5] David Salomon. Data Compression. Third edition. Springer, 2004.

[6] LA Koyrakh, JM Gillberg, NM Wood. Wavelet Transform Based

Algorithms for EGM Morphology Discrimination for Implantable

ICDs. Computers in Cardiology 1999;26:343-346.

[7] Wim Sweldens, Peter Schröder. Building your own wavelets at

home. In: Wavelets in the Geosciences. Springer, 2000.

Address for correspondence:

Lev Koyrakh

4595 Forestview Lane North

Plymouth, MN 55442

lev.koyrakh@gmail.com

420


