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Abstract 

In this work we investigate the synchronization of the 

dynamic behaviour of heart rate (ECG) and brain (EEG) 

signals using sample entropy as a measure of complexity. 

EEG and ECG recordings were collected during 

experiment with sleep-deprived subjects exposed to real 

field driving conditions. The degree to which brain and 

heart complexity loose complexity in a synchronous 

manner, indicating a possible interaction between the two 

systems is investigated. Preliminary results obtained from 

the examination of four subjects show the existence of a 

weak-to-intermediate cross-correlation between these 

pairs of biological oscillators. Furthermore, the 

frequency content in both heart rate and brain signals 

was calculated via power spectrum analysis and the 

association of synchronisation patterns with prevalent 

frequencies in the two systems was investigated.  

 

1. Introduction 

One of the main reasons for many fatal road accidents 

is the fatigue of sleep-derived drivers. Drowsiness leads 

to lengthen reaction time,   decreases vigilance and 

attention and slows information processing [1]. Heart 

Rate Variability (HRV) and electroencephalogram (EEG) 

are two physiological factors that co-vary with 

drowsiness levels [2-6] addressing an underlying 

common central mechanism. EEG is a brain activity 

measure, able to track variations in alertness [7] while 

drowsiness estimation can be achieved with the use only 

of central and posterior channels [8]. Spectral analysis of 

HRV indicates drivers fatigue by increased High 

Frequencies (HF) and decreased Low Frequencies (LF) 

and LF/HF [9].  

The association of EEG and ECG recordings using 

frequency analysis [10] demonstrated an inverse 

correlation between delta band in EEG and LF, LF/HF 

from HRV analysis, suggesting that sympathetic nervous 

activities became decreased with sleep deepening and 

increased with sleep lightening.  

This study aims to determine possible correlations 

between the dynamic behaviour of heart rate (ECG) and 

brain (EEG) signals in order to explore the interaction 

between these two systems for sleep-derived drivers in 

real field conditions. The complexity measure employed 

is the sample entropy which is a probabilistic estimate of 

the pointwise match, within a tolerance, between the two 

signals.  Synchronisation patterns are also investigated 

between HF and theta waves (4-8Hz), which is the 

predominant frequency during the transition state 

between wakefulness and sleep [11]. 

2. Methods 

Twenty one subjects (20 male and 1 female) with a 

mean age of 26.5 years were participated in the real field 

driving experiment,  which was performed in CERTH, 

Thessaloniki, Greece, from 6 June to 27July 2007, using 

the CERTH experiment car. The participants remained 

awake at least 24h before the experiment under 

supervision. 

Electrodes attached to the subject, ensured the 

acquisition of EEG and ECG signals through an 

ambulatory monitoring system, supported by a battery. 

An experienced driving instructor was seated at the co-

driver’s seat. A technician monitoring the functioning of 

the recording equipment was in the back seat and a 

medical doctor monitoring EEG and ECG data, was next 

to him. 

An electro-cap connected to the recording device used 

for the EEG data collection from positions Fp1, Fp2, C3, 

C4, P3, P4, O1, and O2. For the needs of ECG recording, 

electrons were positioned on the sternum and the fifth 

intercostal space on the left side of the body. 

The sampling rate used was 200Hz, with amplitude 

range of ±20µV for EEG signals. The monitoring 

system hardware filters band passed data in the range: 

0.5Hz to 70Hz for EEG, with a notch filter at 50Hz 

power supply component. 

EEG data were first filtered using a 3rd order 

Butterworth filter (band pass range: 0.5 – 0.45 Hz). For 

the ECG data, initially the mean ECG value was 

subtracted from the original channel data. The resulted 

data were band passed with a 6th order Butterworth filter 

(band pass range: 2 – 70 Hz). R-wave intervals (RRI) 

were extracted [12], [13] and artifacts were corrected 
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[14], before calculating Heart Rate [15].  

Recordings analyzed for this study satisfied some 

conditions: I) the drivers managed to accomplish around 

one hour driving task, II) driving errors occurred during 

the measurements, III) not too many driving error 

occurred during the experiment, causing difficulties to the 

study of the features under consideration around the 

events. 

The chosen subjects were: Subject 1, Subject 2, 

Subject 3, Subject 4. Karolinska Sleepiness scale: 7-8, 7, 

7, respectively. 

EEG recordings were divided into 2 minutes windows. 

For each channel, the energy in bands delta (0.5-4Hz), 

theta (4-8Hz), alpha (8-12Hz), beta (12-30Hz), and 

gamma (30-40Hz) was calculated.  

 RR intervals (RRI) were extracted from the ECG 

recordings, while power spectrum components (LF and 

HF) of the Heart Rate were calculated in 4 min window 

with 75% overlap. Sample Entropy of the exported RR 

intervals was also calculated in segments of 4 minutes 

with step 30 seconds.  

3. Results 

The drivers participated in this experiments started to 

feel drowsiness around twenty minutes after they started 

driving. In order to assess that transition from awake to 

drowsiness in the association of the recorded signals, we 

calculated the correlation between EEG and ECG sample 

entropy and between HF (from ECG) and Theta band 

(from EEG) not only for all the signals duration, but also 

for those parts that correspond to the first twenty minutes 

of driving and the rest time of the driving experiment. 

The figures below show the results for the Subjects 

under consideration.  

 

 
 

Figure 1. EEG and ECG Sample Entropy for each Subject 

in the first line of the Figure. Correlation between EEG 

and ECG Sample Entropy (plots in the second line) and 

HF - Theta band, for each Subject (plots in the third line). 

 

 
 

Figure 2. Correlation between EEG-ECG sample entropy 

and HF – Theta waves fore each Subject, during the first 

twenty minutes of driving and for the rest time of the 

experiment in real field conditions. 

 

In the above figures we can see that the 

synchronization between EEG and ECG sample entropy 

can be either positive or negative with lags also positive 

(ECG ahead) or negative (EEG ahead) and close to zero. 

The negative correlation or correlation with negative lags 

is more evidenced in the first twenty minutes of driving, 

while after that time more fluctuations in this 

synchronization can be observed. This decrease of 

synchronization might be a light indication of the driver 

drowsiness.  

The conclusions for the HF and Theta band are similar 

but with higher correlation lags. For the first twenty 

minutes of driving Theta waves seem to be forward, 

while this head can be switched to HF for the rest part of 

the driving task.  

The synchronization between the above signals is 

positive in cases like tolls and electrode disconnection. 

Again the lag for HF and Theta is higher. 

The correlation coefficient for EEG and ECG sample 

entropy in a sliding window of 5 minutes was also 

calculated. During the reported driving errors (vertical 

lines in the plots, Figure 3) lower values of the 

correlation coefficient were observed, indicating loss of 

the signals synchronization during the events. 
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Figure 3. Correlation coefficient for EEG-ECG sample 

entropy for each Subject. 

4. Discussion and conclusions 

This study shows interesting preliminary results for 

the synchronization of heart and brain signals during real 

field driving conditions. A slight interaction between 

these systems can be observed, which varies during the 

driving task, depending on the drivers fatigue and special 

events (e.g. tolls).  

In order to assess and determine the correlation of 

EEG and ECG signals, we need to further investigate 

their dynamic behaviour under different driving 

conditions (more Subjects of different age and health 

status in different drowsiness level and driving 

conditions).  
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