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Abstract

Automated External Defibrillators (AED) detect fatal

ventricular arrhythmias: ventricular fibrillation (VF)

and ventricular tachycardia (VT). We have developed an

algorithm based on the regularity of the detected beats to

accurately discriminate VF from nonshockable rhythms in

pediatric patients.

The beat detection method is based on a preprocessing

band pass filter (5-35 Hz) followed by a nonlinear energy

operator (NEO). The discrimination algorithm uses three

parameters: the number of detected beats, the coefficient

of variation of the interval between beats and the content

around the zero line of the output of NEO. The values

of these parameters were used in a decision tree that

identified irregular shockable rhythms (VF), and slow and

fast regular rhythms, classified as nonshockable. VT was

excluded in the design of the algorithm because it is often

a regular but shockable rhythm.

The algorithm was tested on a database of 1091 records

(959 nonshockable, 62 VF and 70 VT) from 650 pediatric

patients. The specificity was 99.7% and the VF sensitivity

was 96.6%. 33% of the VT windows were identified

as shockable, 65.2% as fast nonshockable and 1.8%

as slow nonshockable. The regularity of the detected

beats can accurately discriminate VF from nonshockable

rhythms. However, an additional stage to discriminate fast

nonshockable rhythms from fast and regular VT is needed

for a shock advice algorithm.

1. Introduction

The use of Automated External Defibrillators (AED)

in children under 8 years of age was approved in the

year 2003 [1]. The rhythm analysis algorithm of an

AED for pediatric use must safely detect fatal ventricular

arrhythmias, ventricular fibrillation (VF) and ventricular

tachycardia (VT), in children.

AED arrhythmia detection algorithms are difficult to

test in children because fatal ventricular arrhythmias are

rare in pediatric patients. Several studies [2–4] have

reported the sensitivity and specificity of AED algorithms

on proprietary databases of pediatric arrhythmias, however

the amount of ventricular arrhythmias was well below

AHA requirements [5].

VF is an irregular rhythm as compared to the regular

normal rhythms. Different approaches have been

described to detect VF, for instance: the frequency domain,

the autocorrelation function or the Lempel-Ziv complexity

measure [6, 7]. We propose a new method based on

the regularity of the detected beats. The method is

simple and computationally cheap it can therefore easily

be implemented in an AED. Furthermore the VF detection

method was developed and tested on a pediatric database.

The algorithm was conceived as a VF detection

algorithm, VT was excluded from the design because

fast monomorphic VT is a shockable regular rhythm.

The performance of the algorithm on VT records was

nevertheless assessed to show what modifications are

needed for a full AED shock advice algorithm.

2. Materials and methods

We used a database of pediatric rhythms to develop and

test the VF detection method. The database which was

created to test pediatric AED shock advice algorithms, is

an extension of a previously reported database [8]. More

rhyhtms were added in the 2006-2008 period and three

new hospitals contributed to extend the database: Donostia

Hospital in San Sebastian, Hospital Gregorio Marañón in

Madrid and San Joan de Deu Hospital in Barcelona.

Table 1. Collected pediatric records grouped by age.

Shock No Shock

Age group a VF VT NSR SVA Other

<1y (40) 3 10 14 40 2

1y-8y (375) 17 41 313 150 39

>8y (235) 42 19 213 152 36

Total (650) 62 70 540 342 77

a Number of patients shown in parenthesis.
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Following the AHA guidelines for the design of AED

shock advice algorithms [5] the ECG records in the

database contain a single rhythm and have no artifact. The

sampling frequency is fs = 250 Hz.

The database contains 1091 records from 650 patients

(mean age: 7.4±4.6 years), classified by three independent

cardiologists in the rhythm categories specified by the

AHA. Table 1 shows a summary of the number of ECG

records, the final classification reflects the consensus

decision of the cardiologists. The database was split in age

groups because the use of AEDs in children was approved

for the 1 to 8 years of age group. The nonshockable

rhythms were grouped in three broad categories: normal

sinus rhythm (NSR), supraventricular arrhythmias (SVA),

and other. The SVA category included supraventricular

tachycardia and atrial flutter/fibrilation while the other

category included the rest of the nonshockable rhythms

specified by the AHA.

2.1. The shock advice algorithm

A quick decision is important for survival in a cardiac

arrest scenario, consequently we designed the AED shock

advice algorithm to give a diagnosis in less than 10 s. Our

approach consists in the analysis of three consecutive 3.2 s
windows, the diagnosis of the record is the predominant

diagnosis of the windows. This means that an episode is

diagnosed in either 6.4 s or 9.6 s. The algorithm is based

on the beat detection process, ECG beats are detected in

windows of 3.2 s with no previous information.

2.1.1. ECG beat detection: the Nonlinear

Energy Operator

The beat detection algorithm consists of an order four

butterworth passband filter (5 − 35 Hz) followed by a

nonlinear energy operator (NEO). The beats were detected

using thresholds adapted to the signal amplitude. The low

frequency cutoff of the filter was selected to maximize the

energy of the QRS complex, in particular to suppress the

influence of large T waves.

NEO has been shown to be an estimate of the

instantaneous energy of a signal, and can be therefore be

used to detect spikes [9]. In pulsed rhythms those spikes

correspond to the QRS complex, during VF no such spikes

should be detected. For a discrete signal NEO is defined as

follows:

ψ[x(n)] = x2(n) − x(n− 1)x(n+ 1)

Beats were marked as the local maximums of ψ[x(n)]
that exceeded an heuristically determined threshold (Th):

Th = 0.025 · max[x2(n)]

a refractory period of 150mswas left between consecutive

beats.

2.1.2. Parameters for VF detection

We used three parameters derived from the beat

detection processed to discriminate VF. The first parameter

was the number of beats detected (Np), which serves

to identify fast and slow rhythms. The regularity of

the detected beats was measured using the coefficient of

variation (the ratio of standard deviation to the mean) of

the intervals between consecutive beats (∆Ti), that is:

CVT =
σ∆Ti

µ∆Ti

The third parameter was the content around the zero line

of the output of the NEO (BCψ). This parameter was

calculated as the P35 percentile of the output of NEO.

BCψ was made independent of the values of NEO by

normalizing it to the median value of NEO in the detected

peaks, and expressed as a percent value. Figure 1 shows

the set of parameters for an NSR and a VF window, NEO

emphasizes the differences between pulsed (spiky) and

irregular rhythms.

2.1.3. The decision tree

We analyzed 3746 windows of nonshockable rhythms

and 156 windows of VF. There was therefore a strong

bias toward the detection of nonshockable rhythms.

Furthermore the duration of the records was not uniform,

the longest record was 51 windows long and the shortest

had one window. To prevent these two sources of bias

the windows were weighted so each record had the same

importance within its class, we gave 66% of the total

weight to the nonshock class and 33% to the shock class

because AHA performance goals are more exigent for

nonshockable rhythms [5].

The windows were classified using a decision tree,

induced using the C4.5 decision tree algorithm on the

whole set of available windows. Figure 2 shows the

decision tree. In the tree the nonshockable rhythms are

further split into fast and slow rhythms using the number of

detected beats. Nonshockable rhythms having more than 7

beats in the window are classified as fast because the mean

heart rate would be above 120 bpm.

3. Results

Table 2 shows the per window and per record results,

when the decision tree was applied to the database. A

record was diagnosed using the predominant diagnosis of

the windows of that record. Fast and slow nonshockable

windows were considered nonshockable. There was an
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(a) NSR window in the time domain and at the output of NEO
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(b) VF window in the time domain and at the output of NEO

Figure 1. NSR and VF in the time domain and at the output of NEO, NEO has been normalized to have a fixed threshold:

Th = 0.025. The content of NEO around the zero line is high for pulsed rhythms and low for VF, as measured by BCψ .

The detected beats are regularly spaced in pulsed rhythms and are very irregular for VF where the beats have no physical

meaning.

important distinction between slow and fast rhythms, most

NSR and other windows were slow (2304/2357, 97.8%)

while most SVA windows were fast (1174/1389, 84.5%).

The results for fast VT, which was not considered in the

design of the algorithm, show that it was either correctly

diagnosed as shockable (33/221, 33.0%) or confused as a

fast nonshockable rhythm (144/221, 65.1%).

However, except for fast VT, the results of table 2 were

computed on the database used to develop the algorithm.

In order to obtain a better estimate of the sensitivity

and specificity of the algorithm we performed a ten fold

cross validation procedure on the weighted windows. The

specificity for the nonshockable rhythms was then 99.7%

and the sensitifity for VF was 96.6%. These results

are representative of the per record results because the

weighting procedure assigns an equal weight to each

record in a class regardless of the number of windows.

4. Discussion

We have developed a new method to detect VF based

on a decision tree induced from three parameters related

to the regularity of the heart beats. The beats were

detected using a nonlinear transformation: NEO. The

method was successfully tested using a 10 fold croos

validation procedure on a pediatric database. We obtained

a specificity of 99.7% for nonshockable rhythms and a

sensitivity of 96.6% for VF.

The method fails to diagnose fast VT as shockable,

33.0% of the VT windows were detected as shockable and

BCψ ≤ 1.86

| Np ≤ 7 : NSs

| Np > 7 : NSf

BCψ > 1.86

| CVT≤ 0.17

| | Np ≤ 7 : S

| | Np > 7 : NSf

| CVT> 0.17 : S

Figure 2. Decision tree. The possible diagnosis are S for

shockable (VF), NSs for slow nonshockable and NSf for

fast nonshockable.
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Table 2. Sensitivity and Specificity per window and per record, the results in parenthesis correspond to the 1-8 years of age

subset of patients. The nonshockable windows are classified into fast and slow as shown in figure 2. The 95% confidence

interval was calculated using the adjusted Wald interval.

Results per window Results per record

NSs NSf S sens/spec nR sens/spec 95% CI AHA goal

NSR 2021 (1243) 47 (31) 6 (2) 99.7% (99.8%) 540 (313) 99.6% (99.7%) 98.6% (98.0%) > 99%

SVA 214 (59) 1174 (568) 1 (1) 99.9% (99.8%) 342 (150) 100% (100%) 98.7% (97.0%) > 95%

Other 283 (164) 0 (0) 0 (0) 100% (100%) 77 (39) 100% (100%) 94.3% (89.3%) > 95%

VF 1 (0) 0 (0) 155 (45) 99.4% (100%) 62 (17) 98.4% (100%) 90.6% (78.4%) > 90%

VT 4 (0) 144 (82) 73 (58) 33.0% (41.4%) 70 (41) 31.4% (41.5%) - - > 75%

67.0% as nonshockable. However, 97.3% (144/148) of the

windows diagnosed as nonshockable were diagnosed as

fast nonshockable windows, and were therefore mistaken

as SVA. A complete algorithm, capable of identifing

VT as shockable, requieres the addition of a SVA/VT

discrimination algorithm. The AHA performance goals

(95% specificity for SVA and 75% sensistivity for VT)

indicate that the algorithm must be designed to accurately

detect SVA. Adult AED algorithms based on rate might

missdiagnose fast SVA as shockable [1,4], our approach is

robust beacuse it is based on regularity.

Previous studies of AED algorithms on pediatric

databases reported comparable results. Cecchin et al. [2]

obtained 96% sensitivity for VF and a 100% specificity.

The VT sensitivity was 71%, below the AHA performance

goal. Atkinson et al. [3] obtained a 98.6% sensitivity for

VF and a specificity of 99.5%. The sensitivity for VT was

100% but it was tested on three samples so the results

were not conclusive. Atkins et al. [4] recently reported

a sensitivity of 100% for VF and 94.9% for VT and an

overall specificity of 99.5%.

Our VF detection method compares well with previously

reported results for AED performance on pediatric

databases. The classification of nonshockable rhythms

as fast or slow groups fast VT with SVA. An additional

SVA/VT discrimination stage is therefore needed for a

full pediatric shock advice algorithm, however this VF

detection method is a good framework for a full AED

algorithm.
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