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Abstract

This study presents our entry in this year’s Computers
in Cardiology challenge. The challenge is the automated
assessment of the electrocardiogram for predicting the
onset of paroxysmal atrial fibrillation/flutter (PAF).

By considering a large set of features derived from RR
intervals, P wave shape and frequency representations of
the P wave we compared the performance of a linear
discriminant classifier processing the feature sets. The
cross-validation scheme was used to estimate classifier
performance. Results demonstrated that features based
on RR intervals were the most successful. Independent
testing showed that the ECG may be of some potential
use in screening subjects for PAF and predicting the
onset of PAF.

1. Introduction

Atrial fibrillation (AF) is the most commonly found
sustained cardiac arrhythmia in clinical practice, and has
serious associated mortality and morbidity [1]. For
example, about 15% of strokes occur in people with atrial
fibrillation, so AF is a significant risk factor for stroke.
The prevalence of AF increases with age and is slightly
more common in men than in women. The prevalence of
AF is 0.5% for the group aged 50 to 59 years and rises to
8.8% in the group aged 80 to 89 years [2].

AF can be either chronic or intermittent. Intermittent
AF is referred to as paroxysmal AF. AF is difficult to
detect, particularly if it is paroxysmal, since an ECG
recording from a paroxysmal AF subject may not contain
any actual episodes of AF. However, some recent
research has hinted that it may be possible to assess the
likelihood of a person having AF even by examining their
“normal” ECG (i.e., a section of ECG where clear
evidence of AF is absent). For example, Vikman et al.
have suggested that there may be an alteration in the
complexity of RR interval dynamics prior to the onset of
PAF [3]. Other work has suggested that changes in
conduction velocity through the atrio-ventricular node
may be associated with AF. To stimulate research in this
area, the organizers of the 2001 Computers in Cardiology
Conference proposed a challenge to interested
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participants. The challenge has two components: (a)
differentiate ECGs from patients with PAF from those
without, and (b) for patients with PAF. differentiate
between sections of ECG immediately prior to AF, and
those distant in time from AF. To facilitate this challenge,
a database of ECGs was prepared and made available
through Physionet [4]. This database consists of 200
paired half-hour ECG recordings. Each pair of recordings
is obtained from a single 24-hour ECG. Subjects in group
A experienced PAF; for these subjects, one recording
ends just before the onset of PAF, and the other recording
is distant in time from any PAF (there is no PAF within
45 minutes before or after the excerpt). Subjects in group
B do not have PAF; in these, the times of the recordings
have been chosen at random. The database is divided into
a learning set and a test set of equal size, each containing
approximately equal numbers of subjects from groups A
and B. The classifications of the recordings in the learning
set are provided. The classifications for the test set are
not publicly available but an automated scoring system is
provided by the database hosts which allows users to
assess the accuracy of their classification schemes on this
withheld test data.

Two challenges were offered: The first challenge was
to identify subjects in the test set that experienced PAF.
The second challenge was to identify which of each pair
of the recordings in the PAF patients was immediately
prior to the episode of PAF.

2. Methods

The ECG signals contained in the database consisted
of paired half-hour two-channel ECG recordings. 25 of
these pairs are from patients with known AF (referred to
as Group A, and containing records P1 to P50 in this
paper, where Pn and P(n+l) are a paired set of
recordings), and 25 are from subjects not known to have
AF (referred to as Group B and containing records N1 to
N50). A further 50 recordings are supplied whose
classifications are not known (T1 to T100). The ECG
recordings are composed of 12-bit samples, recorded at a
sampling rate of 128Hz. Unvalidated QRS onset times
were also supplied with each recording. These QRS
detection times generally corresponded to a location near
the beginning of the QRS complex. Two channels of
ECG signal were supplied.
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2.1.

The two channels of unprocessed ECG signal were
processed using a linear phase high pass filter with a
cutoff frequency of 0.5 Hz to remove baseline wander.
For our purposes, RR intervals were defined as the
interval between successive R wave maxima. Since the
given QRS detection times were typically prior to the R-
wave peak, these detection times were realigned to the R
wave maxima by searching for the maximum in the
region 100 milliseconds beyond each given QRS
detection time.

Plots of the RR intervals defined in this manner
showed that some records had physiologically
unreasonable RR intervals. We applied a simple
algorithm [5] to correct these.

2.2

In order to classify the test records into Groups A and
B, and to identify ECGs in Group A which were
immediately prior to AF, we searched for distinguishing
features in the data. In our work, we ended up using the
same feature sets for both tasks.

The pre-processing steps outlined above result in (a)
an ECG signal with baseline wander removed and (b) a
robust set of valid RR intervals. Based on these, we
considered a large set of features that could potentially be
used for classification. Features we considered were
based on RR intervals, P wave shape and frequency
representations of the P wave. Each of these will be
discussed in turn.

Feature Group 1 was derived from the interval-based
power spectral density of the RR intervals as follows. The
mean RR interval was subtracted from each entry of the
RR sequence to yield a zero-mean sequence. The
sequence was zero-padded to the nearest power of two
exceeding the length of the sequence, and the fast Fourier
transform (FFT) was taken of the entire sequence. The
absolute value of the FFT coefficients were squared to
yield a periodogram estimate of the power spectral
density, which has a high variance. Adjacent frequency
bins were then combined to result in a 16-point PSD
estimate (of which only bins 0-8 are relevant since bins
9-15 provide identical information as 1-7). The
magnitude of these PSD bins were used as features. The
mean and standard deviation of the RR interval sequence
was also included in this feature set.

Feature Group 2 contained time-domain based
measures derived from the RR intervals including -

First to sixth serial correlation coefficients;
NNS50 and pNN50 measures ;
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e RMSSD, and SDSD measures.

Feature Group 3 was formed from direct amplitude
measures of the P-wave. From each QRS detection point,
windows of data were identified by considering the data
in a 180 ms window located 200 ms prior to the QRS
complex (which normally includes the P-wave). The data
in these windows was averaged and resampled at 32 Hz
to form a set of 6 amplitude features. These values were
calculated for both leads of each record set and formed
feature set 3. The motivation for this feature set was that
subjects with PAF may have slightly differing P-wave
morphology than non-PAF subjects.

Feature Group 4 was formed from a frequency
representation of the P wave area as follows. From each
QRS detection point, windows of data were identified by
considering the data in a window located 250 ms prior to
the QRS complex (which normally includes the P-wave).
A 32 point FFT of these 32 points was calculated. The
square of the FFT was taken, and adjacent bins were
combined to yield values in 16 frequency bins. Bins 0-7
were averaged over all QRS detections to form features.
Values were calculated for both leads of each record set
and formed feature set 4.

Time Scales for Feature Sets

The above feature were generated using the following
time scales to form separate feature sets:

Full 30 minutes of data;

Final 10 minutes of data;

Final 5 minutes of data.

In addition, features were generated for each one
minute of ECG data. New feature sets based on the
maximum and minimum differences of the one-minute
based features subtracted from the mean of the one-
minute based features were also calculated. The
reasoning was to ensure that transient activity with useful
diagnostic information would not be smeared out due to
averaging.

2.3.

Linear discriminants were used as the classifier model
for this study. This provides a parametric approximation
to Bayes rule, so in response to a set of input features the
output of the classifier is a set of numbers representing
the probability estimate of each class. The final
classification is obtained by choosing the class with the
highest probability estimate. Linear discriminants
partition the feature space into the different classes using
a set of hyper-planes. Optimization of the model is
achieved through direct calculation and is extremely fast
relative to other models such as neural networks.

Classification techniques



Feature Feature  Optimisation Testing Set Training Set  Withheld set
Group Set Method Accuracy (%)  Specificity (%) Sensitivity (%) | Accuracy (%) Score
RR PSD max REG 81.2 80 82 85.4 32/50
max - 77.6 76 79 88.4
10 Fs 75.0 75 75 75.9
RR other 10 - 79.6 71 88 87.8
max - 73.8 67 80 87.3
30 - 76.8 63 90 86.4
P wave PSD max Fs 68.2 68 68 74.2
min Fs 60.2 68 52 734
5 REG 59.4 56 63 68.0
P wave shape min - 67.0 64 70 79.0
min REG 66.2 62 70 78.8
max - 66.0 62 70 829
Feature Feature  Optimisation Testing Set Training Set  Withheld set
Group Set Method Accuracy (%) Specificity (%) Sensitivity (%) | Accuracy (%) Score
RR PSD 10 Fs 90.4 85 97 95.6 41/50
10 REG 86.8 84 91 88.1 41/50
30 REG 80.0 83 77 82.9
RR other min REG 77.2 76 78 82.1
10 REG 77.6 59 90 79.0
10 Fs 76.8 78 76 84.0
P wave PSD 5 Fs 78.4 81 75 88.6 33/50
5 REG 75.6 69 81 84.2
min - 75.2 74 77 96.5
P wave shape max - 65.2 65 65 853
max REG 57.2 60 55 81.3
10 - 56.8 48 66 68.3

Tables 1(a) and 1(b): A selection of classification results for the two challenges. The top table is for Challenge 1 and
the bottom table for Challenge 2. The following abbreviations are used:

30 —features from 30 minutes of ECG. 10 —features from last 10 minutes of ECG. 5 — features from last 5 minutes of
ECG. Max — maximum of per minute features. Min — minimum of per minute features. FS — Feature selection REG-
Regularisation of covariance matrix. See text for more complete explanation.

The result for the columns under ‘testing set’ and ‘training set’ are obtained by cross-validation. The column titled
‘withheld set’ contains the independent performance assessment of the competition organizers.

24.

Two parallel classifiers were used in Challenge 1 with
each classifier processing the features from one ECG
trace. The probability estimate outputs from the two
classifiers represented the probability of the ECG trace
being PAF. The outputs were combined by averaging and
the class with the highest output taken as the final class.
The classifiers were identical and trained by combining
the feature data from both records for each subject. All of
the 50 training records were used for training.

2.5.

As for Challenge 1, two parallel classifiers were used
with each classifier processing the features from one
ECQG trace. The probability estimate outputs from the two
classifiers represented the probability of the trace being
prior to a PAF episode. The classifier with the most
confident decision (i.e., highest probability) was used to

Classifier structure for challenge 1

Classifier structure for challenge 2
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determine the final class. For examples if classifier one
produced a probability of 0.2 of being prior to PAF (i.e.,
0.8 of not being prior to PAF) and classifier two a
probability of 0.7 of being prior to PAF, then the final
decision would be that trace 1 was not prior to PAF and
trace 2 was prior to PAF.

As for Challenge 1, the two classifiers were identical
and trained by combining the feature data from both
records for each subject. Only the 25 PAF records were
used in training. An alternative structure was explored in
which the difference of the two sets of features from the
two traces was used as an input to a single classifier. This
structure offered the advantage of utilizing the
relationship between the two traces but testing showed it
to be a poor strategy.

2.6.

An exhaustive search was made to identify the best set
of two or less features in every set that optimized the
classification performance.

Feature selection and regularization



Alternatively, the performance of a classifier can often
be improved by reducing the effective number of
parameters of the model. For linear discriminants this can
be achieved by shrinking the covariance matrix (X)
towards the identity matrix I using

Z(a)=(1-a)Z+al 0<a<l.

This is only appropriate if the training data has been
rescaled so the variance of each feature is equal to one.
When a =1 then EZ(z)=1 which results in a special form
of LDA where the features are assumed to be statistically
independent (and hence no covariance). In practice,
various values of a in the range 0 to 1 were evaluated
and the classifier performance determined. The value of
a that optimizes the performance is chosen [6]. In this
study we have used the classification accuracy as the
performance measure. The value of o was chosen to
optimize the test-set accuracy determined from a multiple
runs of cross-validation.

2.7. Performance estimation

The cross-validation data splitting scheme [7] was
used to estimate the performance of the different feature
sets. As the amount of data in this project was very small
multiple runs of cross validation were used to improve
the performance estimate.

For the first challenge the 50 records were divided into
10 folds of S records each. Ten runs of 10 folds cross-
validation were used to estimate the performance. For the
second challenge the 25 PAF records were divided into 5
folds of 5 records each. Ten runs of 5-fold cross-
validation were used to estimate the performance.

For feature selection and covariance regularization a
double loop of cross-validation was used to provide
unbiased estimates of performance. The inner loop of
cross-validation was used for feature selection and
covariance regularization while the outer loop used for
classifier evaluation.

All performance figures quoted have a binomial
distribution and have an associated confidence margin.
Due to the small size of the data set this margin is
relatively wide. Consider the following example. If the
‘true’ classification rate of a classifier is 70% then the
95% confidence interval of the expected performance on
the 50 test cases for the first challenge is 30-41 cases.
Assuming 25 non-PAFs and 25 PAFS for the second
challenge, the 95% confidence interval for the classifier
performance is 39 to 47 cases. Therefore overly
optimistic or pessimistic conclusions on classification
accuracy can be easily based on chance alone.

3. Results and discussion

Tables 1(a) and 1(b) show the best three results from
each feature group for the two challenges. For both

challenges, the RR PSD feature group appeared to be the
best set. However, the cross-validated accuracies on the
training set turned out to be highly optimistic estimates of
performance and made comparison of the performance of
different feature sets difficult. For example on the basis
of cross-validation accuracy the best performing set for
challenge one was the RR PSD set with the performance
of the classifier optimized through regularization. The
expected performance figure was 81.2%. The
performance figure on the independent withheld set was
much worse at 64% (32/50). The difference in the figures
could be due to the following reasons. Firstly the entries
in Table 1 are selected best entries from a larger set,
which introduces a positive bias to the results. Secondly,
the training data set has only 25 examples of the two
classes and this is probably insufficient data for our
methods to work effectively. Thirdly, there is a wide
confidence margin associated with all the performance
figures quoted here. Finally, the withheld test data may
be statistically quite distinct, particularly in the classes of
non-PAF data represented.

4. Conclusion

Our results on training data show that the ECG may be
of some potential use in screening subjects for PAF and
predicting the onset of PAF. Features derived from RR
intervals lead to the most successful classifiers.
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