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Abstract

This study has been performed within the scope of the
CinC-2001 challenge on detection and prediction of
paroxysmal atrial fibrillation (PAF) from 200 paired two
channel ECGs of 30 minutes duration. Different features
of heart rate variability (HRV) describing the magnitude
as well as the regularity of heart rate fluctuations and the
number of supraventricular (SVPCs) and ventricular
(VPCs) premature beats were investigated for their
suitability with respect to the classification task using
ROC-analysis, classification by ranks and linear
polynomial  classifiers with jackknife validation.
Moreover, time courses of mean parameter values were
calculated to identify possible trends. Although promising
results of up to more than 80 % accuracy in screening
and 92 % in prediction were achieved on training data,
these were not reproducible on an independent test set.

1. Introduction

Atrial fibrillation (AF) is one of the most common
arrhythmias observed in clinical practice. Although not
immediately life-threatening for itself, secondary
complications, especially thromboembolism, can imply
dramatic consequences and pose a major risk of stroke.
Mapping studies have suggested multiple reentrant
wavelets within the atrial tissue as a basic mechanism.

Often, sustained forms of AF are preceded by
paroxysms of AF. Since there are ways to electrically
stabilize or circumvent atrial arrhythmias, a reliable
possibility of predicting the spontaneous onset of PAF
would be of high clinical interest. The CinC challenge
2001 aims at identifying changes in the surface ECG
which might be suitable as markers for a prediction algo-
rithm or for the identification of patients prone to PAF.

Studies have shown many different modes in the
initiation of PAF [1], however there are hints on the
autonomic nerve system (ANS) playing an important role
as a trigger for its spontaneous onset [1, 2].

The aim of this study is to investigate the utility of
parameters characterising heart rate variability (HRV),
which are known to reflect ANS control [3], in
identifying patients prone to PAF and predicting its onset.
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2. Material and methods

The data set used in this study consists of 200 2-
channel ECG signals of 30 minutes in duration, recorded
from 99 different persons with a sampling frequency of
128 Hz and 16 bit amplitude resolution. It is divided into
two groups (training set and tests set) each containing
records of patients suffering from PAF (A-group), and
probands (N-group) which are either healthy or have
cardiac disorders different from PAF. For each proband,
two ECG records are provided. In the A-group, one
record (AA-record) immediately precedes the onset of
atrial fibrillation (AF) whereas 45 minutes before and
after the second record no AF is present (AN-record). In
the N-group, inevitably, both records are distant from AF.

For the training set, information was available whether
a proband belongs to the A- or the N-group (each 25
persons in size) and which record is the one preceding
AF. In the test set, no clues were given for the record
pairs. The only fact known was that there are between 20
and 30 A-group patients in the tests set, the actual
number, as announced later, is 28.

The challenge is divided into two events: Event 1
(PAF-screening) aims at identifying the PAF-patients in
the test set, whereas in event 2 (PAF-prediction) the one
record out of each pair preceding the onset of AF had to
be identified.

Our approach is based on the application of standard
pattern recognition techniques on features that mainly
quantify heart rate variability (HRV). Prior to QRS-
detection we increased the sampling rate to 1024 Hz by
means of cubic spline interpolation and applied a median
highpass filter (width: 501 samples) to reduce baseline
wander. To assess whether more relevant information on
the classification problem is contained in the ectopic
beats or normal beats, we performed separate analyses on
the interval series containing ectopics (RR-series) and on
the series consisting only of normal-normal (NN)
intervals. Identification of ectopic beats was based on
prematurity- and delay-thresholds that were automatically
derived individually for each record by analysis of the
relative increase of percentile-values calculated from the
difference of successive RR-intervals and from deviations
of an estimated tachogram baseline. Each beat suspected
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to be ectopic was then submitted to a correlation analysis
where it was classified as being either of supraventricular
origin when the cross correlation coefficient with the
dominant QRS-waveform exceeded the value of 0.9 or of
ventricular origin otherwise.

We were interested to see whether classification
results would improve when shorter data segments
temporally closer to the target event are used as basis for
feature extraction. Therefore, we calculated parameters
on the whole 30 minutes segment as well as on intervals
of 10, 5, and 2 minutes in duration at the end of each
record, which in case would immediately precede the
onset of AF. To possibly identify typical time courses, we
plotted average parameter values calculated on a §
minutes basis for the whole duration of the record.

A part of the features used in this study are statistical
time domain measures common to HRV analysis [3],
such as the standard deviation (SD) of all RR intervals
(SDRR) or between successive beats of normal origin,
(SDNN), the relative (pNN50) number of successive
pairs of NN-intervals that differ more than 50 ms and the
square root of the mean of the summed squares of
differences between adjacent NN-intervals (RMSSD).
These parameters mainly quantify the magnitude of
HRV.

To be able to analyze variations on different
timescales, we applied the discrete wavelet transform
(DWT) with the Daubechies10-wavelet on scales 1 to 10
to the interbeat interval series. Standard deviations of the
wavelet coefficients [5] were calculated on the available
scales and used as absolute (DWT1 .. DWT10) and
normalized (DWT_N1 .. DWT_N10) numbers, with
respect to the maximal value.

The final set of features aims at quantifying the
structure or regularity of heart rate fluctuations [4] and is
calculated from vectors of dimension m obtained by time-
delay embedding the interbeat interval time series x; .
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where H,, denotes the Entropy of the embedding space
eigenspectrum at embedding dimension m:
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Moreover, four-parameter models were fitted (Leven-
berg-Marquard algorithm) to the scaling curves obtained
by calculation of NME_m and EEV_m over varying
embedding dimension m from 2 to 50:

H,

EEV(m) = a+b-m+c-m? +i
m

NME(m) a+b-log(m)+c-log*(m)+d -log*(m)

The respective model parameters a, b, ¢ and d served
as classification features EEV_MI1..EEV_M4 and
NME_M1 .. NME_M4.

To assess the suitability of single features in the
screening task, we determined an optimal threshold from
the training set by means of ROC-Analysis and applied it
to the test set. Thresholding results in separate decisions
c; and c, for the records 1 and 2 of each patient’s record
pair. Therefore, post-processing (pp) strategies had to be
employed to guarantee consistent decisions c*; = cP,
(according to formatting constraints in the challenge) for
both records of each patient in screening and contrary
decisions ¢, # ¢, in prediction. In the screening event,
we tested AND and OR as strategies do derive a conjoint
decision cPP = ¢PP; = ¢PP,:

o? = A4 if (c,=A)/\(c2=A) AND
N otherwise

o o [4 (e, =A)v(c, = 4) OR
N otherwise

For the prediction event, classification by comparison
of ranks was employed, i.e. we looked how often a
parameter calculated from the AA-record immediately
preceding the onset of PAF shows consistently higher (or
lower) values than the same parameter calculated on the
corresponding record of each pair. One may criticize that
this approach is highly adopted to the structure of the data
set, however the primary aim was to identify features that
reflect consistent changes prior to the onset of PAF and in
this respect it makes sense to take advantage of an intra-
patient analysis.

To evaluate feature combinations, in both events a first
order polynomial classifier was trained on the training set
and validated using the jackknife or leave-one-out
method.

3. Results

Table 1 gives results for the best single features in the
prediction event, based on comparison of ranks. All
parameters were calculated from the entire 30 minutes,
containing all RR intervals. The interpretation of the first
line is, that the standard deviation of the wavelet
coefficients on scale 9, was greater when calculated from



Table 1: Rank-Distribution for single features (30
minutes, RR intervals) in PAF prediction.

Parameter PAF-Rank  Training set Test set
DWT9 > 22/24 14/28
DWT3 > 19/24

pRR50 > 19/24 16/28
SDRR > 18/24

NoSVPCs > 17/24

DWT N3 < 13/24

the record preceding the onset of AF in 22 out of 24
training set patients, compared to the control record.
However, this was reproducible in only 14 out of 28 test
cases. Even simple pNN50 performs better here. A higher
number of supraventricular ectopic beats in the 30
minutes before AF onset was found in 17/24 patients.
Although, on training data, several features show
remarkably consistent rank distributions, a discrepancy
between training and test set results is clearly evident,
which continues in recognition of patients prone to PAF.
Table 2 summarizes sensitivity and specificity for the
best single features. The results were obtained by ROC
analysis using the indicated threshold and post-processing
strategy. Again, several parameters achieve satisfactory
results on the training set with an accuracy around 80%,
however their sensitivity on the test set is so bad that the
results could not be submitted to CinC due to constraint
violations. This performance decrease is at least partly
due to differing distributions within learning and test set,
as can be seen from figure 1 for parameter EEV_M3, one
of the model parameters of the eigenspectrum entropy
scaling curve. The indicated threshold yields a sensitivity
of 79% and specificity of 84% (table 2, figure 1 upper).
However, applied to the test set (figure 1 lower), only 13
values, which we would interpret as PAF positive, are
found below that threshold. Facing those deviations, it
becomes clear that feature combinations using a
polynomial classifier must experience the same problem
on test data, although jackknife-validated results of up to
22/24 in event 2 and 88%/76% in event 1 using three
features suggest reproducibility.

Table 2: Classification results by thresholding of
single features in event 1 (30 minutes, RR intervals).

Parameter Thresh PP Training set Test set
sens./spec.

EEV_M3 or 79%/84% 13 PAF

NME_M3 and 88%/71% 16 PAF

EEV_M1 and 83%/71% 13 PAF

NoSVPCs >3 and 88%/69%

NoSVPCs > 14 or 88%/71%

EEV_7 or 75%/76%  33/50

DWT_N1 >0.08 and 79%/71%

DWT 1 >20.88 and 63%/63%

Control

training set

frequency

test set

X 163
value of feature EEV_M3

Figure 1. Distribution of parameter EEV_M3 in the
training (upper) and test (lower) set. Optimal threshold
(dotted line) obtained by ROC-analysis.

If in spite of those disillusioning results we try to
identify some trends from the training set, we can see
from table 1 that the more successful features in
prediction rather quantify the magnitude of heart rate
fluctuations, whereas the best features for screening
(table 2) are based on properties of the embedding space
eigenspectrum and relative magnitudes (DWT_N1 vs.
DWT1 in table 1 and table 2). In both events, increased
supraventricular ectopic activity is related to PAF, which
agrees with findings reported in other studies [1, 2].

Trend plots showed on average an increasing
magnitude of HRV in AA-records (figure 2). Therefore,
features like SDSD (figure 2 upper), pRR50, SDRR, and
the absolute DWT-parameters, yielded slightly better
results in the prediction event when calculated on shorter
time segments closer to the onset of AF. However, the
improvement normally only comprised 1 to 3 better
classified pairs, which might not be statistically
significant.
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Figure 2. Time course of 5-min mean of parameter
SDSD, calculated from RR (upper) and NN (lower) data
for AA- (solid), AN- (dashed) and N-records (dotted).

Intervals indicate + standard error of mean.



z |
€ 3
l\l
> 26
[44]
22
Z 2.4}
& 22
~
> 2r
o 5
o 18t !

25 20 15 10

Time to end of record [min]

Figure 3. Time course of 5-min mean of parameter EEV
with m=7, calculated from RR (upper) and NN (lower)
data for AA- (solid), AN- (dashed) and N-records
(dotted). Intervals indicate + standard error of mean.

This increase in magnitude of interval fluctuations
turned out to be closely linked to ectopic activity. When
calculated on NN intervals, the observed trends and
differences between AA- and AN-records vanished for
virtually all features (figure 2 lower). Therefore,
generally classification performance decreased markedly
in event 2 on NN data. On the other hand, for the time
domain features, differences between A- and N-groups
became more distinct and revealed reduced sinus HRV in
PAF-patients. SDNN reached 71% sensitivity and
specificity in separating the groups using a threshold of
27 ms.

Remarkably, for the eigenspectrum parameters, neither
a trend in the AA-record nor a difference between AA-
and AN-record is visible on RR data (figure 3 upper),
which explains their worse results in event 2. However,
there are time-independent differences between A- and
N- group that are reflected in good results using the
AND-pp strategy in table 2. Interestingly, although these
features don’t show the trend of figure 2, they are
definitely influenced by ectopics, since differences
between A- and N-group are significantly less marked on
NN data (figure 3 lower).

4. Discussion

Clearly, the discrepancy between training and test set
results renders any conclusions from this study
questionable. Looking only at the test set, the most
obvious interpretation is that rhythm features alone are
not sufficient for the problem of PAF recognition. This
however, is inconsistent with the promising jackknife
validation results obtained on the training set. Overall,
this rather suggests either a sample size too small, or a
difference between training and test data, the origin of
which remains unclear. Considering the manifold
mechanisms underlying AF-initiation [1] and the possible

132

heterogeneity of the groups with respect to cardiac
diseases, ectopic activity and medication, both
alternatives are plausible.

Well aware of the wuncertain validity of any
generalization, we would nevertheless like to summarize
some interesting observations on the training data:

As expected, we found that most information on the
problem is contained in the occurrence of ectopic beats,
when analysis is restricted to rhythm features alone. In
agreement with previous studies [1, 2], on average, there
seems to be a progressive increase in atrial ectopic
activity prior to the onset of AF, which — due to
prematurity and compensatory pauses - is directly
reflected in higher mean values of parameters quantifying
the magnitude of HRV as SDRR, pRR50 and RMSSD or
SDSD (figure 2, table 1). Due to this temporal trend,
features quantifying the extent of HRV were generally
more successful in PAF prediction on RR-data, especially
when calculated shortly before PAF-onset. The fact that
this superiority completely vanishes on NN-data (figure 2
lower), emphasizes the crucial role of SVPCs. In this
context, it is highly remarkable, that parameters
calculated from the embedding space eigenspectrum,
although definitely influenced by ectopics, do not reflect
this time course (figure 3). Their concordant behaviour
within the PAF-group, consistently different from the
controls, rather indicates a possible existence of more
permanent HRV changes in PAF-patients, independent of
the imminent onset of AF, which might be useful in
screening.

The significance of those findings, however, will not
be assessable until more information on the composition
of the training set is available.
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