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Abstract

In this study, we used heart rate variability parameters
to first characterize, and then automatically detect Slow-
Wave-Sleep (SWS). First, a wavelet transform was used
to decompose equally sampled RR interval series into
their time dependent spectral components: Very Low
Frequency (VLF) 0.005-0.04Hz, Low Frequency (LF)
0.04-0.15Hz, and High Frequency (HF) 0.15-0.45Hz.

Then, the known decrease in LF power during SWS
sleep was confirmed, and a linear relation between the
average LF/HF balance throughout the night, and the
balance during SWS, was found. Also similar behaviour
was found with VLF power and VLF/HF ratio.

Finally, a decision algorithm with two criterions was
defined using a training set of ECG recordings, and
applied on a test set. Results summed to 80% correct
identification of SWS. Limitations of the study, as well as
inherent differences between SWS definitions based upon
EEG and ECG, are discussed.

1. Introduction

Nocturnal sleep time is subdivided into cycles. Each
cycle repeats 4-5 times a night in healthy subjects, and
each consists of a cascade of sleep stages, normally in the
same order of occurrence (but with different proportions
during the night). Sleep stages are determined according
to a set of rules defined by Rechtschaffen and Kales (R&K)
[1] based on 3 bio-signals: electroencephalogram (EEG),
electromyogram (EMG), and electroocculogram (EOG).
It is accustomed to define 3 stages of existence: Wake,
REM sleep and Non-REM sleep. The later is further
subdivided into Light Sleep (LS - sleep stages 1 and 2),
and Slow Wave Sleep (SWS - sleep stages 3 and 4).

The assessment of the normality of sleep and sleep
structure are commonly done in a sleep laboratory, using
an expensive, and uncomfortable sleep study
(polysomnography), which involves the recording of
various bio-signals including EEG, EOG, EMG, ECG,
pulse oximetry, and various breathing related signals.
These tedious studies are the reason for the wide search
for alternative methods of sleep assessment, and for
screening tests that might partially reduce number of full
sleep studies [2,3].
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In this search of alternative methods, studies have
already shown that the ECG signal alone contains
relevant information regarding sleep (e.g. sleep onset and
arousals from sleep during the night [4]), sleep
disturbances (e.g. detection of apneic events during the
night [5]), and sleep structure (e.g. differences between
SWS and other sleep stages [6]). The information
regarding sleep structure can be uncovered by spectral
analysis of the RR interval signal. Studies have shown
that HF percentage of total power is increased during
SWS at the expense of a reduction in the LF power
percentage [6]. Also, studies have shown that the balance
of powers LF/HF during the night is usually above unity,
but during SWS it decreases below unity in normals, and
remains above unity in apneic subjects [6,7]. However, in
these studies, measurements were made on isolated
segments of sleep that had first been clearly identified as
belonging to a certain sleep stage, and then analysed.

In the present study we are trying to do the opposite,
i.e. first measure the spectrum continuously during the
entire night, with no a priory knowledge of sleep stages.
Then, analyse the power distribution as a function of time
in general, and specifically during SWS, and finally try to
identify SWS from temporal spectral behaviour.

2. Methods

The study included 34 adult subjects (age 35%15, 20
males, 14 females), arbitrarily selected from the typical
adult population referred to a sleep study for a multitude
of reasons. Only children (under 15 years of age) and
subjects with any heart related disease were rejected.
Data from 17 (arbitrarily chosen) served for the
development of the algorithm (training set) and the other
half served to validate the detection method (test set).

All subjects underwent a full sleep study including
recordings of the following signals: 2 central EEG
(digitised at 100Hz), 2 occipital EEG (100 Hz), chin and
tibialis EMG (100 Hz), left and right EOG (100 Hz),
ECG (200 Hz), abdomen and thorax effort (10 Hz),
oxygen saturation (1 Hz), nasal air flow (100 Hz). All
studies were monitored off-line and sleep stages were
determined according to standard R & K criteria by a
sleep expert. Apnea events and other sleep disturbances
were also marked. This staging was the reference against
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which we later examined our automated SWS detection
algorithm.

The automated algorithm consisted of the following
steps: (1) Detect R wave peaks in all ECG files using an
automated algorithm. Create an equally sampled RR
intervals series (RRI). (2) Time-dependant spectral
analysis of the RRI series using the wavelet transform
algorithm described in [8,9]. The results of the transform
created 3 arrays which describe the development in time
of the: VLF power (0.005-0.04Hz), LF power (0.04-
0.15Hz), and HF power (0.15-0.45Hz). (3) Derive and
define a set of rules for automated detection of SWS,
from the training set arrays. (4) Apply the set of rules on
both, the training and the test sets.

3. Results

The output of the wavelet transform of the RRI series
of subject LO3 is shown in figure 1, together with the
sleep stages as determined by standard R &K criteria.
The plot shows the LF power, as well as its ratio with
respect to the HF power, as function of time (the time
unit is a sleep epoch = 30 seconds). Note that during
SWS (stages 3 & 4 — marked bold), the LF/HF balance,
and LF power, reach their lowest values.
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Figure 1: Graphic illustration of the limits set for the algorithm criteria. Top plot shows LF power as sleep progresses.
Horizontal line indicates threshold below which is one third of LF values. Middle plot shows LF/HF ratio during the
night. Horizontal line shows the calculated expected ratio according to whole night average ratio. Lower plot depicts
sleep stage as a function of time as determined by R & K criteria (see text). 0 is for wake and movement time, 0.5 for
REM, 1 and 2 for LS, and 3 and 4 for SWS. Note the good agreement between periods under the horizontal lines and
SWS. Also note that sleep stage 2 at the end of night has boundary conditions with regards to algorithm criteria.
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Table 1. Average absolute power values and standard
deviation.

SWS LS REM
VLF 0.014+0.009 0.031+0.021* 0.036+0.026*
LF 0.010+0.009 0.020+0.015* 0.021+0.013*
HF 0.013+0.014 0.016+0.016+ 0.015+0.013

* Significant increase compared to SWS p<0.001
+ Significant increase compared to SWS p<0.05

Average LF power and HF power during SWS have
shown  significant  decrease  (p<0.001, p<0.05
respectively) for all subjects, using one-tail-paired t-test.
As shown in table 1, the VLF power exhibits a similar
significant decrease in power during SWS.

Furthermore, figure 2 shows the average LF/HF
balance during SWS, against the average balance
throughout the entire night. Each subject is represented
by one point in the graph. As shown by the regression
line, a linear relation exists between the two average
balances. This relation was later used to predict the
expected LF/HF balance during SWS from the average
balance values during the night. Similar relations (but

with different slope values) exist between the balance _

during other sleep stages and whole night average. A
summary of these results can be found in table 2. Note
again that the ratio VLF/HF has similar stage-dependent
behavior, but with slightly different slopes.

Using these results, we formulated two criteria by
which our algorithm defines SWS. The first criterion
requires that the balance between the locally averaged LF
(or VLF) power and the locally averaged HF power be
below a limit determined per each subject. The limit was
set between the expected balance during SWS and the
expected balance during LS.
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Figure 2: Linear regression of LF/HF ratio during SWS

and the ratio during whole night for all subjects in
training set.

Expected values were calculated using the relations found
(by linear regression) between whole night balance and
the balance during the sleep stage (different for SWS and
LS - see table 2). The second criterion is based on the
significant LF (or VLF) power decrease during SWS, and
on the typical abundance of SWS, which is about one
quarter of total sleep time. Taking the LF power
measured during the night, the second criterion was met
when LF (or VLF) power was within the lower third of
values. - Any period in time that met both criterions, was
marked as SWS.

Applying the two criteria on signals recorded during
the whole night gave 82% and 80% correct identification
in the training set and test set, respectively (See table 3
for test set results). Most of missed classifications
(~70%) of non-SWS were during stage 2 (13% out of
19% in test set), typically at the second half of night. The
lower correct classification per subject was 65%.

Table 2. Linear regression (R value)

LF/HF VLF/HF
SWS vs. y=0.65x+0.03 y=0.52x+0.14
Whole night (R=0.88) R=0.91)
LS vs. y=101x+0.02 y=0.84x+0.31
Whole night (R=0.98) (R=0.95)
REM vs. y=135x-0.27 y=133x-0.31
Whole night (R =0.89) (R =0.84)
4. Discussion

In this study, a wavelet transform was used to
decompose RRI series into its spectral components as a
function of time. Power in each of 3 bands VLF, LF, and
HF was calculated and used to confirm the known results
of significant LF power decrease during SWS (as-well-as
non-significant HF power decrease). In addition we found
that VLF power also significantly decreases during SWS.

A linear relation between LF/HF or VLF/HF balance
during the whole night and the balance values during
SWS, as well as during other sleep stages, was found. A
combination of these results was used and allowed for
correct classification of 80% of SWS and non-SWS
epochs during the night, in the test set.

The same results were obtained when regrouping our
subjects into apneic subjects and non-apneic subjects.

In some subjects we noted that changes in HRV
parameters preceded the SWS related changes in EEG, by
1-3 epochs. This time difference may be explained by the
different origin of the EEG and ECG signal, although
some of the upper centers of the central nervous system
that are active through human sleep also play a role in the
autonomic functioning. This difference may pose an
inherent limitation on the maximum agreement that can



be reached between the two methods, as the autonomic
nervous system is also affected by sources not directly
related to the central nervous system.

A non-inherent limitation in this study was the
relatively low ECG sample rate (200Hz), which was
imposed by the available sleep laboratory system. Also,
improvement may be achieved by defining thresholds
that adapt during the night to the changing LF power and
LF/HF balance. This may especially help with the miss-
classification in late episodes of SWS where it seems that
LF power as well as LF/HF balance increase (on
average).

Further work is yet needed to characterize the
difference between LS and REM using HRV parameters.
However, the promising results obtained in previous
studies (using similar time dependent spectral tools) that
showed detection of sleep onset [4], arousal periods
during sleep [10], and apnea events [5], together with the
results presented in this study, may be combined to build
an alternative description of sleep structure and sleep
disturbances, using HRV parameters. This description
might provide a physiological interpretation of sleep
stages.

Table 3: Classification results for the test set:

R&K SWS Non-SWS
Algorithm results (stage 2)
SWS 78 19 (13)
Non-SWS 22 81
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