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Abstract

The authors present an investigation into the incidences
of ectopy and artefact as a function of time of day, heart rate
and state changes for 19 normal subjects. State changes
are defined to be a statistically significant change in mean
or variance over a window of a few minutes. Artefact
incidence is shown to be significantly correlated with
state change and heart rate in normal humans, whereas
ectopy exhibits no significant relationship. Artefact is
therefore shown to be a source of information which can
aid identification of activity or state changes and facilitate
abnormality detection in patient populations.

Timing thresholds are proposed which differentiate
between artefact, ectopy and sinus beats. A classification
system based upon the frequency of artefact occurrences
in relation to state changes is presented which correctly
separates 78% of the the real (normal) and artificial RR
interval time series in event 2 of the CinC Challenge 2002
(entry number 38).

1. Introduction

Over the last twenty years there has been much
interest in methods for characterising the 24-hour RR
time series of humans in order to differentiate between
patient populations and provide diagnostic information. For
example, much work has been done to evaluate 24-hour
heart rate variability (HRV) metrics in a clinical setting
[1]. However, the utility of results using these metrics is
still controversial and clinical communities are reluctant to
adopt such metrics as markers of health [2].

Recent studies [1, 2] have shown that variations in
physiological activity, at specific times, over the 24-
hour period are indicative of health and/or recovery.
Although some of the metrics used to assess cardiovascular
activity are based upon quantifications of real physiological

mechanisms (manifest as spectral peaks around specific
frequencies [3]), no explicit allowance is made for circadian
changes over the course of a 24-hour period.

Recent work has moved towards a more direct
quantification of the behaviour of circadian cardiovascular
changes. In particular, Bernaola-Galván et al. [4] have
attempted to quantify the beat-to-beat variations of human
RR intervals over a number of different time scales.

Analyses of such variations often only take into account
beat-to-beat changes in normal (sinus) rhythm beats since
inclusion of non-sinus (abnormal) beats in the analysis can
cause serious errors in estimations of the variability in the
RR time series [5]. However, the frequency of abnormal
beats has been shown to be an independent predictor of
health of patients in high risk groups [1]. Furthermore,
for similar recording processes and detection algorithms the
frequency of artefact is also related to patient activity [6].
Artefact may therefore provide an independent source of
information about the circadian variations over the course
of a 24-hour recording.

Methods for describing and quantifying circadian sinus
rhythm changes as an aid to detecting normal human
cardiovascular activity (and therefore deviations from
normality) are presented in an accompanying paper ‘A
Method for generating synthetic RR time series of normal
humans over 24-hours’ (entry number 201 in event 1
of the the Physionet/Computers in Cardiology (CinC)
Challenge 2002). This paper investigates the incidence of
ectopy and artefact in the Physionet Normal Sinus Rhythm
database (NSRDB) [7] in relation to means, variances and
accelerations in the RR time series. The results are used for
generating realistic ectopy and artefact in the above entry
for event 1 of the the CinC Challenge 2002.

Simple beat-to-beat RR interval acceleration thresholding
is used to label ectopy and artefact. These threshold
calculations are used to assess the incidence of ectopy and
artefact for all entrants in event 2 of the the CinC Challenge
2002 (entry number 38).
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Figure 1. Fifteen minutes of RR interval data for a
normal subject (16265) in the Physionet NSRDB. A state
change is considered to have occured when adjacent 100
second segments have significantly different means ( ��� , ��� )
or variances ( 	 �� , 	 �� ).

2. Description of data

In the short term, over a period of one to five minutes, a
normal healthy human RR time series is characterised by a
few dominant frequency components which, together with
their variances and the local mean RR interval (averaged
over 100 to 300 seconds), tend to change quite slowly.
Within such segments, cardiovascular activity is considered
to be approximately stationary and frequency domain
analysis is often employed [1]. A shift in cardiovascular
state is associated with a change in both the local mean
RR interval and the relative contributions of the component
frequencies as well as a change in variance [4]. Such state
switching is often accompanied by changes in physical or
mental activity and therefore the frequency of such shifts
may be an indication of the overall activity of a subject.

Consider two 100 second segments before and after a
given RR interval with means ��� and ��� and variances 	 ��
and 	 �� respectivley. In this paper, a state state change is
considered to have occured if � � is significantly different
from � � , or 	 �� is significantly different from 	 �� . Figure 1
illustrates a state transition (at 
�� �����
���� seconds). Note
the mean and variance change 100 seconds either side of
the transition.

3. Distribution of artefacts and ectopic
beats in real data

In this paper, artefacts are defined to be disturbances
in the ECG with beat-like morphology (labelled by ‘ � ’ in
the Physionet annotations) such that a conventional R-peak

detector would label it as a beat. Ectopic or abnormal
beats are defined to be those labelled by L, R, A, a J,
S, V, r, F, e, j, n, E, P, f, Q, or ?. These are usually
identified by experts because of the associated abnormal
morphology and timing with respect to normal sinus beats
(labelled ‘N’). This paper deals only with aspects of beat to
beat timing. Abnormal beats are often defined (in terms of
their timing) as occurring either unusually early or late with
respect to a sinus beat. It should be noted that the actual
time stamp of the abnormal beat or artefact depends both
upon the morphology of the beat/artefact and the method
of detection. The Physionet database has been scored by
clinicians who appear to have attempted to locate the top
of the R-peak in a lead II configuration. This is effectively
the function that many standard beat detectors such as sqrs
perform [7].

In the absence of morphological information, standard
texts define beats to be abnormal if the RR interval changes
by more than 20% of the previous normal to normal (N-
N) beat [1]. However, abnormal (ectopic) beats can occur
within the tolerances of normality. This section presents
results quantifying the distribution of timings of sinus to
sinus beats (N-N), sinus to ectopic beats (N-E) and sinus
to artefact (N-A) in terms of percentage change from the
previous N-N interval for the 19 subjects in the Physionet
NSRDB. In effect, this quantifies the relative acceleration
of the instantaneous heart rate ( ����� ). The percentage
change in the n ��� RR interval is calculated using

 ����!�"#
$���%� ��� !%& ��� !(')���� !(')� � (1)

If �  ��� ! � is greater than some threshold * , the two beats
that constitute the current RR interval are defined to be a
non-sinus beat pair (abnormal RR interval) and therefore
the following RR interval must be ignored (as it includes
the current abnormal beat).

Figure 2 illustrates the distribution of �  ���%� for all
3 beats pairs of beat categories (N-N, N-E and N-A).
Note that there is only a relatively small overlap between
the distributions of each pair, indicating that there might
be some optimal thresholds to be chosen for a particular
application. Figure 3 illustrates the percentage of N-E and
N-A timings that are removed and the percentage of N-
N beats that remain for +-,.*0/1�2 . The choice of
threshold therefore depends on the prevalence of artefact,
the application and the associated tolerances.

By inspecting the RR time series from the NSRDB it
is possible to observe ‘clumping’ of artefacts on or near
state changes. If this observation is true for all artefacts
then short sections of the RR time series (approximately
100 seconds in length) either side of an artefact should
exhibit significantly different means ( ��� , ��� ) or variances
( 	 �� , 	 �� ). This is tested by locating all the N-A beat intervals
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Figure 2. Distribution of absolute percentage change in RR
interval ( 3 4%5�563 ) for sinus to sinus beats (upper plot), sinus
to ectopic beats (middle plot) and sinus to artefacts (lower
plot) for all 19 subjects in the Physionet NSRDB.

4 6 8 10 12 14 16 18 20 22 24

55

60

65

70

75

80

85

90

95

Absolute percentage change in RR interval

P
er

ce
nt

ag
e 

of
 b

ea
ts

 re
m

ai
ni

ng
/re

m
ov

ed

Sinus beats remaining

Artefact removed

Ectopic beats removed 

Figure 3. Percentage of N-N beat pairs remaining ( 7 ), N-E
( 8 ) and N-A ( 9 ) removed for :(;=<?>A@CB�DE; for all 19
subjects in the NSRDB

and performing Student’s t-test on sections of the RR time
series either side of the artefactual RR interval. If we
cannot reject the null hypothesis that the means are equal,
then we test for unequal variances with the F-test [8]. If
either the t- or F-test indicates a statistically significant
change in mean or variance respectively, a state change
is assumed to have occurred at this point. The lower plot
in figure 4 illustrates the percentage of N-A beats that
have significantly different means or variances 100 seconds
either side of the artefact for each of the 19 subjects in
the NSRDB. Note that 14 of the 19 subjects have over
80% of their artefacts associated with state changes and the
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Figure 4. Percentage of significantly different states ( F�GIHJF�K or L KG HJ L KK ) in 100 second segemts before and after
artefact (lower plot) and ectopic beats (upper plot), tested
using t- and F-tests for all 19 subjects in the Physionet
NSRDB.

remaining 4 subjects have between 40% and 75% of their
artefacts associated with state changes. In contrast to this,
N-E beat pairs show no particular trend, and are distributed
evenly between zero and 100% (figure 4, upper plot).

The frequency of ectopy is therefore independent of
time in relation to state changes, and (in subjects with
at least some ectopy) the frequency is approximately one
abnormal beat per hour. However, the presence of artefact
is linked both with state change and mean heart rate. The
model (described in the accompanying conference paper,
‘Method for generating an artificial RR time series of a
typical healthy human over 24-hours’), uses three separate
probability distributions are used; P(ectopy), P(artefact in
a state), P(artefact at a state change). The latter two
distributions are HR dependent.

4. Using M NPOQO�RSM thresholding to identify
ectopy and artefact in unlabelled data
for normality classification

The techniques of the previous two sections are applied
to unlabelled RR interval data in event 2 of the CinC
Challenge 2002. The data consists of 50 RR time series,
approximately 50% of which are generated artificially and
50% of which are derived from real ECGs of normal
patients similar to those found in the NSRDB. The purpose
of this exercise is to ascertain if the activity of the patient
is normal or abnormal from an analysis of artefact alone
(artificial RR time series are assumed to exhibit abnormal
artefact distributions).

However, when analysing unlabelled data, thresholding
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using equation 1 alone may lead to problems at state
changes. As the T�UWV accelerates (as is often the case
between states), the X%U�UWY between sinus beats is often
greater than 20 %. If the mean HR of a subsequent state
is sufficiently different, and the variance, of the next stateZ)[[ , sufficiently low, all the following state’s N-N beats will
be excluded since the last accepted sinus label will be from
the previous state (with a much lower or higher associated
RR interval value). The solution to this is to check both
the current RR interval and the next but one, then AND the
results of each test. i.e. a beat is defined to be abnormal
if \ X%U�U�Y�\S]_^ & \ X6U�U�Y�` [ \a]_^ . Although some N-N
timings with large accelerations may be omitted by such a
method, recovery is rapid, because the subsequent X RR’s
are likely to be similar to the last accepted RR interval.

Each of the 50 RR time series were tested in two steps.
i) The percentage change in each RR interval is measured
and if \ X%U�U Y \�bdcfeEg the current RR interval and the
following RR interval are labelled as ‘ectopic’ and ignored
for the next comparison. If \ X6U�U�Yh\ibje�k�g then the
RR interval and the following RR interval are labelled as
artefactual. ii) The t- and F-test are then performed on
100 second segments either side of each artefact label. In
order to ensure that outliers (mislabelled artefacts or ectopic
beats) do not affect the results, the largest and smallest
10% of the RR intervals in the sections being tested are
discarded. A classification is then made for each subject as
follows: if more than 70% of the artefacts are significantly
associated with a state change, then the RR time series is
deemed to come from a normal subject (i.e. it was not
artificially generated). This thresholding gave a score of 67
( lnmoqp correctly classified) in event 2 of the CinC Challenge
2002 (entry number 38).

5. Conclusions, limitations and future
work

Results indicate that ectopy does not have a significant
correlation with time of day or HR, although the total
number of ectopic beats is low and analysis of further
data sets may give a different result. Artefact incidence is
correlated with local mean RR interval such that artefact is
lower during low heart rate periods such as sleep, except
when local mean HR increases (possibly related to sleep
stage changes). Out of sleep, the incidence of artefact is
higher, particularly at steep changes in local mean HR,
when state changes occur and the mean or variance over
a 100 second window changes significantly, again possibly
related to changes in levels of activity.

Artefact is therefore associated with changes in activity
independent of the information in the RR time series
formed from the sinus beats. The increase in artefact
incidence at state changes may be linked to the changes in

patient activity that precipitate, or are a result of, these state
changes.

Due to the overlap of the distribution of RR interval
changes, timing techniques will always lead to a small
number of errors which may significantly affect results of
certain cardiovascular metrics [6, 5]. However, information
from the morphology of each beat can significantly
improve the beat type classification [9, 10] and could be
combined with timing information to improve automatic
beat labelling.
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