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Abstract
The main intention of this contribution is to sketch our

way of analysing the 50 time series from the 2002
Computers in Cardiology challenge. The task to cope is
to discriminate simulated and physiological heart rate
variability signals. Our approach for doing this is rather
simple: We exclude time series which show non-
physiological behaviour. The methods applied serve to
quantify the distribution of the RR-intervals, the
circadian beat-to-beat variability as well as the beat-to-
beat dynamics. Using cut-offs for these parameters, both
time series groups can be discriminated clearly. Thus, the
intricate interdependencies of variations in heart rate
variability data on different scales are still difficult to
simulate, such that even an experienced observer may be
misled easily.

To demonstrate the suitability of our methods not only
for characterising simulated and physiological data, an
outline of further applications shall be given.

1. Introduction
Physiological data very often show complex structures

which cannot be interpreted immediately. Therefore, the
simulation of such time series seems to be extremely
sophisticated. However, the classification of
physiological and simulated heart rate variability (HRV)
time series should be possible. The data analysed here are
the 50 time series from the challenge organised by
PhysioNet [1] and Computers in Cardiology 2002. The
main intention of this contribution is to sketch our way of
discriminating both types of time series and demonstrate
further applications of our methods in risk stratification.

2. Methods
HRV analysis is often difficult due to excessive

artefacts and arrhythmias. While occasional ectopic beats
are treated successfully by most preprocessing methods,
more complex arrhythmias or arrhythmias which are
similar to normal HRV fluctuations may remain
untreated. Therefore, the preprocessing of the data shall
be dealt with separately in the subsection below.

2.1. Data preprocessing
Ectopic beats in the tachogram are usually

characterised by a  short coupling interval followed by a
pause with a longer RR-interval than the preceding sinus
rhythm or by a short coupling interval only without a
pause. Simple percentile exclusion rules consider these
facts; when the current value of the tachogram differs
from its predecessor by more than a certain percentage,
the current value and its successor are marked as not
normal. The advantage of this filter is the very simple
rule. However, the disadvantages are rarely considered
[2]. Therefore, we developed an adaptive filtering
algorithm [3] which is superior to simple percentile rules.
A MATLAB implementation of this filtering algorithm is
freely available [4].

The disadvantage associated with standard linear
parameters in HRV analysis [5] is the limited information
about the underlying complex system, whereas the
nonlinear description suffers from the curse of
dimensionality. Mostly, there are not enough points in the
(often non-stationary) time series to reliably estimate
these nonlinear measures. In addition to standard
parameters, we therefore favour the measures of
complexity which characterise quantitatively the
dynamics even in rather short time series [6,7].

2.2. RR-interval distribution
A standard measure to quantify the histogram, i.e. the

density distribution of the RR-intervals, is the triangular
index HRVi [5]. It is the integral of the density
distribution (number of all RR-intervals) divided by the
maximum of the density distribution. This measure
expresses the overall HRV measured over 24 hours and is
mainly influenced by lower-frequency processes. A
major advantage of this parameter lies in its relative
insensitivity to the quality of the investigated HRV time
series. In this study, however, the Shannon entropy of the
histogram was used [7]. As shown in [8], the Shannon
entropy in combination with other parameters is a better
predictor of a high arrhythmia risk than the standard
HRV measurement in patients who survived a myocardial
infarction.
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2.3. Circadian variability changes
To quantify the circadian variability changes, we used

the parameter ‘pNNl10‘, the percentage of NN-interval
(filtered RR-intervals) differences lower than 10
milliseconds. This parameter was calculated for
successive 5-minutes windows – the standard deviation
of these values over 24 hours is a suitable measure to
identify day-night variability changes. Obviously, there
are several other parameters to quantify these changes,
e.g. ‘cvNN’ - the coefficient of variation [7].

2.4. Beat-to-beat dynamics
Heart rate variability reflects the complex interactions

of many different control loops of the cardiovascular
system. As far as the complexity of the sinus node
activity modulation system is concerned, a predominantly
nonlinear behaviour has to be assumed. Thus, the detailed
description and classification of dynamic changes using
time and frequency measures is often not sufficient.
Therefore, we have introduced new methods of nonlinear
dynamics, derived from symbolic dynamics, to
distinguish between different states of autonomic
interactions [6,7]. The first step of this approach is the
transformation of the time series into symbol sequences
with symbols from a given alphabet. Some detailed
information is lost in this process, but the coarse dynamic
behaviour can be analysed.

The transformations into symbols have to be chosen
on a context-dependent basis. For this reason, measures
of complexity have been developed on the basis of such
context-dependent transformations, which have a close
connection to physiological phenomena and are relatively
easy to interpret.

By comparing different kinds of symbol
transformations, we found that the use of four symbols,
as explained in eq. (1), is appropriate for our purpose.
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The time series x1,x2,x3,...,xN is transformed into the
symbol sequence s1,s2,s3,...,sN, where si is an element of
the alphabet A={0,1,2,3}. The transformation into
symbols refers to three given levels, where µ denotes the
mean beat-to-beat interval and a is a special parameter,
here chosen to be 0.05; we tested several values of a from
0.05 to 0.08. However, the resulting symbol sequences
did not differ significantly.

There are several quantities that characterise such
symbol strings. Here, the frequency distribution of words
of length 3 is analysed, i.e. substrings which consist of
three adjacent symbols, leading to a maximum 64
different words (bins). This is a compromise between

retaining important dynamic information and having a
robust statistics to estimate the probability distribution.
The beat-to-beat dynamics in this paper, finally, was
quantified with the parameter ‘wsdvar’ which measures
the variability of the words occurring [7].

3. Results
Our approach to discriminating between simulated and

physiological time series is rather simple: We exclude
time series which show non-physiological behaviour. The
first decision rule is

“The distribution of the RR-intervals is too narrow!”,
which was quantified by the Shannon entropy of the
histogram. Time series with entropy values less than 2.8
were excluded (RR-series with the numbers 10, 27, 28,
36, 42, 45). The second rule is

“No circadian beat-to-beat variability changes”,
quantified by the 24h variability of the parameter
‘pNNl10’. Time series with pNNl10 values less than 0.07
are set to be simulated (RR-series with numbers 2, 3, 4,
11, 17, 19, 25, 26, 29, 31, 43, 44, 49 were detected).

The final decision for the remaining time series was
made using the symbolic dynamics approach. The
simulated time series showed a lower word variability
than the physiological one, which was quantified by the
parameter ‘wsdvar’. As clearly visible in Fig. 1, the
simulated time series (filled spheres) have a lower beat-
to-beat dynamics than all physiological heart rate time
series (open spheres). Hence, the last decision rule is

“A decreased beat-to-beat dynamics”.
Using this rule, the last three simulated time series

remaining could be detected. As obvious from Fig. 2, the
last three simulated time series all have a sufficiently
broad density distribution (even if it is skewed in rr37)
and show circadian changes in HRV. HRV is decreased
for faster heart rates and increased for a slower one. All
other simulated time series did not fulfil these simple
rules.
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Figure 1. The symbolic dynamics parameter wsdvar -
mean value vs. standard deviation over 24 hours.
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Figure 2. The remaining (not detected) simulated series
before the last decision rule: rr32, rr34 and rr37.

4. Discussion
This contribution presents our way of discriminating

the 50 simulated and physiological heart rate variability
time series from the 2002 Computers in Cardiology
challenge. Our approach to doing this was rather simple:
We excluded time series which showed non-
physiological behaviour. The methods we applied served
to quantify the distribution of RR-intervals, the circadian
beat-to-beat variability as well as the beat-to-beat
dynamics. Using cut-offs for these parameters, both time
series groups could be discriminated clearly. The cut-offs
were subjectively chosen based on the knowledge of the
normal ranges of the used parameters. Moreover, it was
an act of instinct which parameter to choose first. So, we
are sure that there are a lot of ways to discriminate both
groups of time series. At least with our parameters,
however, it was impossible to distinguish between the
groups using one parameter only. This is exactly what we
got in earlier studies [8]. Several parameters are
necessary to quantify the complexity of HRV signals. To
our knowledge, the best way for analysing such complex
physiological data is to calculate time and frequency
domain parameters as well as parameters which describe
the dynamics in the time series. The advantage of doing
this was demonstrated in [7,8] as well as in an animal
model of Mas-deficient mice [9]. Symbolic dynamics is a
useful tool in several fields of complexity analysis in
science. Moreover, it is a method with a very close
connection to physiological phenomena and relatively
easy to interpret. It also yields promising results for the
prediction of life-threatening cardiac events which were
measured in implanted cardioverter defibrillators [10,11].
To sum up, the intricate interdependencies of variations
in heart rate variability data on different scales

are still difficult to simulate, such that even an
experienced observer may be misled easily.
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