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Abstract

By using a local recursive least squares approach, named
the � � filter, to improve Detrended Fluctuation Analysis, we
addressed the identification of real and synthetic Heart Rate
Variability (HRV) data proposed as part of the Computers
in Cardiology Challenge 2002. This approach provided
power-law patterns that were used to correctly classify the
majority (46/50) of the Challenge dataset. In addition,
we show that this approach revealed patterns in real HRV
data that do not necessarily follow a uniform power-law.
Consequently, this paper promotes familiarisation with
scaling information that has not been reported previously
for healthy HRV data.

1. Introduction

Either by a linear spectral characterisation or by
quantifying the non-linear properties, the analysis of Heart
Rate Variability (HRV) can be seriously affected by the
non-stationarity nature of these data [1]. Yet stationary
conditions are difficult to achieve even in short-term records
under physiologically stable or autonomic controlled
circumstances. Accordingly, Detrended Fluctuation
Analysis (DFA) [2] has been applied. This is a fractal
method that has advantages because it permits the detection
of long-range correlations embedded in non-stationary time
series. DFA has confirmed, for healthy HRV data, long-
range correlations over a wide range of time scales [3].
These results suggest that HRV data, lacking characteristic
scales and having long-range correlation, reveal a healthy
organising principle that seems to break down in several
pathological states [3].

Essentially, the DFA explores the power-law relationship
of the average root-mean-squared fluctuations as a function
of time scales to provide the fractal exponent, or slope
covering the short or long-term ranges. Rather than finding
this fractal exponent to coarsely characterise those ranges,
we have adopted a recursive least squares method, the � �
filter, to recover the behaviour patterns in the power-law as a
function of the time scales. We have used simulated and real
data to evaluate this incorporation that we believe confers
advantages to DFA by showing continuous variations in

the power-law. Thus, these variations reveal more clearly
abnormal physiological conditions.

It is in this context, that the second event of the
Computers in Cardiology (CinC) Challenge 2002 [4]
presented an opportunity for us to obtain a further
evaluation of the DFA improvement by using the � � filter.
Here, we present the results of addressing that Challenge
by this approach. Briefly, the aim of the Challenge was
the identification of either real or synthetic data from a set
of 50 long-term records to promote the understanding of
mechanisms underlying HRV as well as the exploration of
novel analytic methods.

2. DFA improvement by ��� filter

Basically, the DFA method [2] explores a power-law
relationship after removing non-stationary trends from the
original HRV series. Initially, the series is integrated and
divided into windows, or boxes, of equal number of 	
intervals. In each window, the local trend is obtained by
a least squares line fit. This trend is locally subtracted
from the integrated series. The average root-mean-square
fluctuation, 
����	�� , is then calculated.

The previous procedure is repeated for all window sizes
or time scales 	 . Subsequently, the relationship on a
double-log graph between these fluctuations 
����	�� and
time scales 	 can be explored. Normally, by assuming a
linear model ( 
����	�����	�� ) the scaling, or fractal, exponent�

is estimated by the slope of the log-log plot covering
short or long-term range. Rather than finding this exponent
only for predefined ranges, we have adopted the � � filter
to recursively estimate a least-squares fitting for tracking
the evolution of the gradient (i.e. of the power-law) as
a function of log time scales. This filter has been used
to characterise the operation of an induction motor or for
tracking targets [5, 6]. A description of how the � � filter
can be used to improve the DFA method as applied to HRV
data (equations 1–5) is presented next.

Let �����	�� be the log of the average root-mean-squared
fluctuations, 
����	�� , produced by DFA at the window
size 	 , with 	 being the number of RR intervals (or the
equivalent physiological time scale). Define � �!�	�� as the
required estimate of the gradient at the log window size 	 .
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Since a logarithmic representation of the window size " is
employed, it is convenient to use an initial interpolation of#�$�% "�& so that it is parameterised by a uniformly sampled
variable in the logarithmic representation of the window
size domain; using ' to denote the discrete elements or
samples of this new variable. Then, it is possible to
predict the value of the root-mean-squared fluctuations at' according to:

#)(*% '+&-, #/.0% '�1320&5476 .!% '81329&;: (1)

where
#�(<% '+& is the predicted log root-mean-squared

fluctuations,
#8.!% '=1>29& is the estimate of log root-mean-

squared fluctuations at '�1�2 , and : is the uniform separation
between successive elements of the parametrized variable.
The original piece of information, i.e. the log root-mean-
squared fluctuations

#/$�% '*& , produced by the DFA method
at ' , is combined with the previous prediction

#?(*% '+&
according to:

#/.0% '*&-,A@B2C1ED % '*&GF #�(<% '+&�4HD % '+& #�$�% '*& (2)

in order to obtain the estimate of the log root-mean-squared
fluctuations at ' . Here, D % '*& is a smoothing coefficient at' . Finally, the desired estimate of the gradient at ' , 6 .!% '+& ,
can be obtained from:

6 .!% '*&I,J6 .!% '�1K20&�4
LI% '+&
: @ #�$�% '*&�1 #)(+% '*&GF (3)

where
LI% '+& is the second smoothing coefficient of this

approach. The smoothing coefficients D % '+& and
L-% '*& are

given by:

D % '*&-,
M % M '81329&
' % '�4�20& (4)

and

L-% '*&I,
N

' % '�4�29& (5)

To take into account any possible deviation from linearity
in the log domain, these coefficients are prevented from
going to zero for 'POJQ (we have found the value Q>,SRUTVT
as an appropriate balance to avoid either the gradient not
being adequately tracked or the noise artefacts becoming
significant).

3. Data to be analysed. CinC challenge
2002

As part of the second event of the PhysioNet/CinC 2002
a dataset consisting of 50 time series of RR intervals was
posted to promote the classification of this set into real and
synthetic data [4].

The only information provided for this dataset was
that approximately half of the series were obtained
from long-term ambulatory ECG recordings of subjects
between the ages of the 20 and 50 who have no known
cardiac abnormality. The remaining part of the dataset
corresponded to synthetic HRV data (produced using
generators submitted by participants in the first event of
the challenge as well as by generators provided by the
organisers). Each series contained between 20 and 24
hours of RR intervals and real data may also have included
isolated ectopic beats.

4. Classification criteria

We used the improved DFA analysis (i.e DFA plus D L )
to obtain the power-law pattern for each series of the
Challenge dataset. Prior to the application of this technique
the pre-processing procedure suggested in [7] was used to
remove unqualified sinus beats. The resulting power-law
patterns were studied under the following assumptions to
classify them as either real or synthetic.

For real HRV data, scaling exponents, or slopes, near
to unity in the long-range have been reported [2] which
support the hypothesis that healthy HRV presents a type of
1/f behaviour or uniform power law. By contrast, for short-
range, the scaling exponents are larger than unity. These
have been attributed to the smooth fluctuations that are
associated with respiration [2]. In addition, we have studied
power-law patterns from healthy HRV data by using the
improved DFA described above. The resulting patterns are
generally in accordance with those observations, showing
deviations above unity in short-range and on occasions
following a uniform power-law, or constant gradient, in
long-range. However, since this approach provides more
information it is also possible to find deviations from a
uniform power-law that cannot be quantified or detected by
a single exponent.

5. Results

Using the above criteria it was possible to identify 20
entries on the dataset that did not present normal power-
law behaviour in either short or long-range so providing
an initial identification of synthetic data. Furthermore,
by comparing their power-law patterns it was possible to
unambiguously associate these entries in pairs. Hence,
these results were in accordance with the Challenge
specifications describing that each generator of synthetic
data was used to produce two series.

As an example of this synthetic group, Figure 1 presents
entries 02 (left) and 29 (right) of the Challenge dataset.
In the top part of the figure are included the original
series whilst in the bottom are depicted the corresponding
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Figure 1. Power-law patterns of synthetic HRV data

power-law patterns. Also shown as dashed lines are the
theoretically expected values for white noise (0.5), 1/f
noise (1), and Brownian noise (1.5). Interestingly, it
is not possible to relate these series by only studying
their temporal evolution; however, the power-law patterns
clearly reveal the same statistical behaviour for both series.
In the long-range it is possible to appreciate that these
series involve Brownian like behaviour whilst for the short-
range a white noise appearance can be postulated. These
two conditions, not showing either smooth oscillations in
the short-range or persistent long-term correlations, are
unrealistic characteristics of healthy HRV data.

Figure 2 presents another pair of presumed synthetic
data, entries 28 (left) and 45 (right). Here again, it is
possible to appreciate different temporal evolutions yet
almost identical power-law patterns. These patterns do not
present long-range correlations or clear deviations above
unity in short-range. Additionally, it is also possible to
appreciate a strong Brownian behaviour for the intermediate
range and some notches that can be associated with the
existence of perfectly regular oscillations. These again are
dubious characteristics of real HRV data.

By contrast, Figure 3 presents examples of six power-
law patterns that were considered real because they
present long-range plateaus near unity (i.e. they follow a
uniform power-law) and they show clear deviations above
one in short-range. This means that in these patterns
it is possible to appreciate the involvement of smooth
oscillations perhaps associated with short-term autonomic
responses and the underlying existence of persistent long-
term correlations. These patterns were obtained from
entries 06, 08, 24, 41, 47 and 50.

In addition to the 20 initial entries classified as synthetic,
one more pair having very similar power-law patterns was
also found. For this reason, these patterns were classified
as synthetic in spite of presenting more realistic features.
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Figure 2. Power-law patterns of synthetic HRV data
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Figure 3. Power-law patterns of real HRV data

As a result, 22 entries were selected as synthetic whilst the
remaining 28 apparently showing normal behaviour were
identified as real. Using this classification we achieved a
Challenge score of 88 points indicating that the majority
of the dataset (46/50) was correctly classified. Yet four
entries still remain to be properly re-classified. Figure
4 presents two possible candidates. These power-law
patterns, obtained from entries 10 and 37, were initially
classified as real due to existence of long-range correlations.
However, owing to the intrinsic deviations of DFA for small
window sizes, these kind of patterns that asymptotically
approach [8] a uniform power-law and do not show major
deviations in short-range, could also be produced by data
generated using conventional 1/f W noise synthesis methods
[9].

Finally to promote a further familiarisation with the
power-law patterns that can be found in healthy HRV
data, Figure 5 presents six additional results obtained from
entries 01, 07, 13, 18, 21 and 40 of the Challenge dataset.
Since strictly similar pairs were not possible to be found
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Figure 4. Possible candidates for re-classification, 1/f X
noise ?
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Figure 5. Power-law patterns of presumed real HRV data

for these patterns, we assume that they belong to real
data. Interestingly, three patterns (13,18 and 40) seem
to lack deviations associated with smooth oscillations in
short-range and all patterns involve long-range deviations
from a uniform power-law. These deviations could be
explained by the existence of characteristic scales in the
data. Consequently, HRV data obtained from subjects
with no cardiac abnormalities do not always appear to
present a uniform power-law as has been suggested before
[3]. Furthermore, it is reasonable to speculate that either
these kind of deviations are not necessary abnormal or
that these subjects presented sub-clinical or undetected
manifestations.

6. Conclusions

By studying only power-law patterns it was possible
to classify correctly the majority of the CinC Challenge
dataset and to gain an insight into the statistical properties

of the generators used to create synthetic data. These
patterns were obtained as a result of improving DFA by
a local recursive least squares method named the Y�Z
filter. In addition, it was shown that this improvement
reveals patterns in real data that do not necessarily follow
a uniform power-law. Consequently, this paper promotes
familiarisation with scaling information that has not been
reported previously for healthy HRV data.
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