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Abstract 

Heart rate variability is assumed to result from a 
multiplicative or cascade mechanism based on its 
multifractal property. Numerical results on the 
perturbation of the cascade are given to compare HRV 
under parasympathetic (PNS) and sympathetic (SNS) 
autonomic blockades. It was found that qualitative 
change of the HRV multifractal, which was observed in 
PNS blockade, is due to the change from a multiplicative 
to an additive mechanism. 

 
1. Introduction 

The random fluctuation of the interbeat time (RRi) 
interval has been widely studied by its power spectrum, 
which is known to consist of a narrow-band harmonic 
component and a broad-band fractal component [1]. 
Recent studies suggest that the scaling structure of the 
fractal component is highly nonuniform and can in fact be 
put in the framework of multifractal [2,3]. Even for 
practical purposes, the fractal component of HRV can be 
of particular interest. It is known in healthy humans that 
the fractal signal power can measure up to 70% to 90% of 
the total RRi signal power [4]. Moreover, experimental 
data indicated strong correlation between the increase of 
mortality rate in certain heart disease population and the 
diminishing fractal characteristics [4]. However, the 
physiological origin and purpose of the fractal HRV 
remain largely unclear. 

 
HRV is mainly contributed by the fluctuating 

autonomic nervous system dynamics (ANS). The 
blockade of the sympathetic (SNS) and parasympathetic 
(PNS) branches of ANS have shown some very 
interesting results [5,6]. In particular, the fractal 
component can go through a qualitative change from 
multi- to monofractal transition (MMFT) in PNS 
blockade but only to remain similar in SNS blockade. In 
the current investigation, we are interested in finding the 
leading factor of the cascade, which results in MMFT. In 
what follows, we will first propose the idea of cascade 

HRV model based on the multifractal paradigm from 
complex systems (Section 2). We then apply 
perturbations to investigate the “instability factor” which 
can lead to MMFT in the cascade-generated multifractal 
(Section 3). Interestingly, the model favours 
multiplicative rather than additive mechanism, which is 
counterintuitive since the latter is related to the notion of 
feedback. Finally, the summary of results and conclusion 
are given in the last Section. 

 
2. Cascade heart rate variability 

Although the indication of multifractal fluctuation in 
HRV does not spell out the detail in physiology terms, it 
does suggest a multiplicative or cascade generating 
mechanism for the fractal component of HRV. The 
objective of this Section is to summarize the ideas of the 
cascade HRV. 

 
Random cascade can be generally put in the 

framework of positive martingale theory [7]. In practical 
terms, it consists of three elements: (a) the branching rule, 
(b) the probability law of the cascade component and (c) 
the multiplicative data generation rule. 

 
The cascade HRV assumes the random phenomenon is 

a result of the product of J cascade components: 
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A gaussian ωj(t) = 1+ξj will be used through out this 
study where ξj, j = 1, …, J are independent gaussian 
variables (in j) with <ξj > = 0 and <ξiξj> = δijσj

2 (δij is the 
Kronecker delta). It is necessary to assume a bounded 
rJ(t) because of the refractory property of the heart muscle 
cells [8]. We impose a stronger condition in the model to 
further assure the boundedness in J → ∞ limit. This can 
be achieved by letting σj > σj+1. Motivated by the 
deterministic bounded cascade [9], )1(

0 2 −−= j
j

ασσ were 

used where σ0 and α are constants. The estimation of 
these parameters from the RRi data has been summarized 

0276−6547/02 $17.00 © 2002 IEEE 149 Computers in Cardiology 2002;29:149−152.



in an article published in the same volume and in 
previous works [3]. 
 
In addition to the gaussian assumption and the decaying 
variance, ωj(t) is further set to vary only on discrete times 
{tk

(j)}: ωj(t) = ωj(tk
(j)) for tk

(j) ≤ t < tk+1
(j). The time set {tk

(j)} 
is designed to provide the self-similarity structure in the 
data fluctuation and thus defines the branching rule for 
the cascade. In this work, dyadic time scales were used: 
tk

(j) = kN/2
j
, k = 1, …, 2

j
 where N = 2

J 
is the number of 

data points. Notice that the number of the elements of  
{tk

(j)} is an increasing function of j. Hence, the ωj(t) for 
small j can be considered as contributing to the large time 
scale fluctuation in HRV, or the “slow dynamics.” 
Similarly, the ωj(t) of large j is considered as contributing 
to the small time scale fluctuation of HRV, or the “fast 
dynamics.” It is tempting to relate such “slow” and “fast” 
dynamics to, respectively, the sympathetic and 
parasympathetic nervous system dynamics. Such a 
connection was recently tested and consistent results can 
indeed be established [10]. 
     
3. Perturbed cascade HRV 

Regular cascade was able to generate very similar 
phenomenology observed in healthy daytime HRV [3]. 
To simulate HRV in different physiological conditions, 
the components (a) and (c) of the cascade are perturbed. 
The gaussian ωj(t) will be used through out this study as 
other distributions do not seem to produce qualitatively 
different results. We then examine the scaling of the 
perturbed rJ(t) in �|∆rJ(τ)|q� ∼ τζ(q) where ∆rJ(τ) = rJ(t+τ) 
– rJ(t). For monofractal, ζ(q) = hq is a linear function and  
for multifractal, ζ(q) is nonlinear. In what follows, we 
will need to make reference to the interval length of the jth 
generation of a dyadic cascade. For convenience, this is 
denoted by jJj

dk
−= 2)(

,τ . 

 
The branching rule of the cascade is defined by three 

parameters (C, )( j
kτ , Nj): where )()1(
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k tt −= +τ  and Nj denotes the number of intervals in 

the jth cascade generation. )( j
kτ  and Nj are dependent to 

each other since N = ∑ =
jN

k
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j
. The perturbation on the 

branching rule can thus be achieved by considering C and 
)( j

kτ  as random variables. Fig. 1 shows the cascade 

configurations with the perturbed branching rule: a 
random )( j

kτ  of the dyadic cascade (Fig. 1a), a mixed 

dyadic and triadic cascade (C = 2 and C = 3 of equal 

probability) (Fig. 1b) and, more generally, a random C 

constrained by Nj 
�  3×2

j
 (Fig. 1c). The averaged scaling 

exponent ζ(q) from 100 samples of rJ(t) in respective 
cases show qualitatively similar shapes which indicate 
multifractal (Fig. 2). This implies the robustness in the 
cascade-generated multifractal under the branching rule 
perturbation. 

 
It turns out a qualitative change of the scaling property 

is only possible by perturbing the data generation rule (c). 
This is achieved by replacing (1) with 

 
 rj(t) = rj-1(t) + ωj(t)                          (2) 
 
for t in randomly selected interval [ )()(

1,
j

k
j

k tt + ]. In the 

numerical experiment, a random draw B was first made 
uniformly in [0,1] to determine the random intervals to 
which (2) is applied. The multiplicative rule (1) was kept 
if, for some D, the criterion B > D is satisfied, otherwise, 
(2) was used. We tested three cases: uniform perturbation 
(UP) with a constant D = D0 (Fig. 3a), small time scale 
perturbation (SSP) with D = D0 j, where the criterion is 
less likely passed for large j in the higher generation of 
the cascade (Fig. 3b), and large time scale perturbation 
(LSP) with D = D0(J–j), where the criterion is less likely 
passed for small j in the lower generation (Fig. 3c). For 
UP and SSP, the averaged ζ(q) is closed to a linear 
function, indicating MMFT after the perturbation (Fig. 4). 
The averaged ζ(q) under LSP is nonlinear in shape and is 
qualitatively similar to the unperturbed ζ(q) (Fig. 4). 
These results are consistent to the experimental findings 
of MMFT in PNS blockade and multifractal HRV in SNS 
blockade. At least in the framework of bounded cascade, 
the present results imply that MMFT is likely caused by 
the perturbation of the data generation rule from a 
multiplicative to an additive one. 

 
4. Conclusion 

In this study, the cascade HRV under autonomic 
blockade is studied. Numerical simulations were able to 
generate MMFT when multiplicative cascade is replaced 
by an additive mechanism uniformly over all time scales 
and selectively over the small time scales. By the analogy 
of “slow” and “fast dynamics” in the cascade, these 
results are consistent with the experimental observations 
of HRV in PNS and SNS blockades. It has long been 
recognized that biological systems should rely on some 
form of feedback mechanism to maintain its homeostasis. 
The present results raise an interesting question about the 
fractal component of HRV since feedback is in nature an 
additive procedure. This study showed that the 
cardiovascular regulation “favors” a multiplicative law in 
generating the broad-band characteristics of healthy 
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HRV. The replacement by an additive rule, which can 
lead to MMFT, is in fact “problematic” in the sense of 
some known physiological effects in PNS blockade [6]. 

Figure 1 Cascade configurations from the branching rule 
perturbation. Only the first 6 generations are shown (The 
0th generation corresponds to initial condition): (a) )( j

kτ = 
(1+aU) )(

,
j
dkτ  and U is an uniformly distributed random 

variable in [0,1] and a �  [0,1]. (b) Mixed dyadic-triadic 
branching rule with 80% dyadic and 20% triadic 
branching. (c) Mixed branching rule where the number of 

interval at each generation is bounded by Nj 
�  3×2

j
 and C 

is an integer random variable covering the full range 
bounded by )()(

1
j

k
j

k tt −+ for j = 1, …, J. 

 
Figure 2 Scaling in the perturbed cascades shown in 

Fig.1: ζ(q)’s based on Fig. 1a for a = 0.4 ( � ) and for a = 

0.8 ( � ), see also Fig. 1 caption; ζ(q) based on Fig. 1b 

( � ); ζ(q) based on Fig. 1c ( � ). All ζ(q) are averaged 
from 100 samples of rJ(t) using log2(σj)=-1.6-0.126(j-1) 
and J = 15. Solid line shows the averaged ζ(q) and one 
standard deviation for the unperturbed dyadic bounded 
cascade. 
 

 

 

 

 

 

 

 

 

 

Figure 4 Scaling in dyadic cascades with perturbed data 
generation rule described in Fig. 3 (next page): ζ(q) for 

UP, D0=0.05 (– + –) and D0=0.3 (– � –); ζ(q) for SSP, 

D0=0.03 (– � –); ζ(q) for LSP, D0=0.03 (–o–). All ζ(q)’s 
are averaged from 100 samples of rJ(t) based on log2(σj) 
= –1.6 – 0.126(j–1) and J = 15. Solid line shows the 
averaged ζ(q) ± one standard deviation for the 
unperturbed dyadic bounded cascade. 
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Figure 3 Representative cascade configurations for 
perturbed data generation rule. Only the first 8 
generations are shown from bottom to top (the 0th 
generation is the initial condition). (a) UP, (b) SSP and 
(c) LSP; Only those intervals where the multiplicative 
rule (1) is applied are shown. 
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