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Abstract 

Changes in the ECG ST segment are often observed in 

patients with myocardial ischaemia.  However, non-

ischaemic changes in ST level are also common thereby 

limiting ischaemia detection accuracy.  The aim of this 

study was to devise an algorithm and determine its 

accuracy in distinguishing between ischaemic and non-

ischaemic changes in the ECG ST-segment, using 

expertly annotated ECG data sets as a gold standard 

reference.  The algorithm considered only the change in 

ST relative to a baseline ST level (∆ST) provided by the 

PhysioNet database, and based on simple level 

thresholding within specified time windows.  An initial 

score of 82.3% (accuracy 91.1%, with sensitivity 99.0% 

and specificity 88.8%) was achieved for the learning set.  

By making slight modifications to the algorithm and 

introducing principal components of ST it was not 

possible to improve the original algorithm.  The original 

algorithm was therefore left as our challenge entry 

achieving an accuracy of 90.7% for the test data set 

(score of 81.4%, entry 1, 1 May 2003). 

 

1. Introduction 

Therapeutic intervention to reduce transient 

myocardial ischaemic episodes could significantly 

improve the quality of life in affected subjects by 

reducing morbidity and mortality.  The current methods 

of diagnosing these ischaemic events include 

cardiovascular imaging of the coronary arteries [1]. 

However, such specialised and resource intensive 

techniques are, arguably, unsuitable for studying 

ischaemic events brought on by activities of daily living 

in any one individual.  Another technique, based on the 

analysis of the ECG waveform, has shown promise since 

abnormalities in the repolarization of ischaemic 

myocardial regions are visible in the ST segment of the 

ECG [2,3].  Although changes in ST elevation/depression 

can be quantified they can also occur because of a wide 

variety of other causes, including changes in heart rate, 

conduction pattern, hyperventilation, electrolyte 

abnormalities, response to medication, response to 

temperature changes, position of the subject, and noise in  

the ECG [4,5].  Despite these uncertainties, ECG 

measurements can be highly sensitive, easy to do, and 

lend themselves to ambulatory (e.g. 24 hour) assessments 

[6-8] and computer-based automated analyses [9-11].  If 

it were possible to accurately distinguish between 

ischaemic and non-ischaemic ST changes in ambulatory 

ECG recordings made during subjects’ normal activities, 

the benefits could be immediate and substantial to the 

patient. 

The aims of this study were therefore a) to produce a 

novel algorithm to distinguish ischaemic and non-

ischaemic ST changes in the ECG waveform and b) to 

determine the accuracy of the algorithm using expertly 

annotated ambulatory ECG data sets as a reference. 

 

2. Methods 

2.1. Basic algorithm 

Data for the changes in ST (∆ST) provided by 

PhysioNet were used.  An example of ∆ST is shown in 

figure 1.  Event start times (Ts), for which the expertly 

classified ST changes (ischaemic or non-ischaemic) were 

known, were also provided and used in the development 

of the algorithm. ∆ST represents the difference in ST 

between the current ST level and the baseline level.  

Principal components of ST provided by PhysioNet were 

also used in the optimization of the algorithm.  

 

 
Figure 1. Example 24 hour ∆ST recording from 

learning data set, as provided by PhysioNet. 

 

The algorithm was based on the premise that 

ischaemic ST changes are large relative to non-ischaemic 

changes and that they are maintained for a period of time. 

The algorithm classified events as ischaemic if at the start 

of the event ∆ST was greater than a threshold ∆ST 

(Vthres), and before the end of the event ∆ST maintained a 

minimum level (Vmin) for a period of time (Tmin).   
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The end of an event (Te) was defined as the time at 

which ∆ST fell below the threshold for a further period of 

time (Tthres).  Figure 2 defines the relevant ∆ST and time 

thresholds.  Figure 3 provides a flow chart for the 

automatic classification of events.   

This basic algorithm gave results that were highly 

sensitive (identified nearly all ischaemic events) but not 

specific (many non-ischaemic events were classified as 

ischaemic), see section 3.1. 

 

 

 

 

 

 

 

 

 

2.2. Algorithm optimization 
 

With a view to optimizing the algorithm, we 

investigated the effect of reclassifying as non-ischaemic 

those events which were classified as ischaemic by the 

algorithm according to; i) the number of threshold 

crossings and ii) thresholds on the Mahalanobis distance 

from the first five principal components of the ST signals.   

 

 

 

Figure 2.  Illustration of amplitude thresholds and time intervals used in the algorithm. 

Figure 3. Flow chart for automatic ischaemic event classification. 
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2.2.1. Number of threshold crossings 
 

We hypothesized that in ischaemia ST changes would 

occur rapidly with fewer crossings of the threshold 

voltage than artifactual ST changes.  An additional 

parameter, the number of threshold level crossings (Ncross) 

for a specified threshold level (Vcross), was calculated for 

those events classified as ischaemic. 

 

2.2.2. Principal component analysis 
 

Principal component analysis of the ST time series has 

been reported to be more sensitive to ischaemic changes.  

Threshold levels were applied to the time series of the 

Mahalanobis distance from the first five principal 

components of the ST.  For events classified as ischaemic 

by the basic algorithm, these events were reclassified as 

non-ischaemic if in the principal component time series 

the threshold level (Vkltmin) was not maintained for a 

period (Tkltmin). 

  

2.3. Analysis 

To evaluate the algorithms under different ∆ST and 

time thresholds, the sensitivity, specificity, accuracy and 

challenge score (number of correct classifications – 

number of incorrect classifications (%)), were calculated. 

 

3. Results 

3.1. Basic algorithm 

The results for altering the values of Vmin, Tmin and 

Tthres while keeping Vthres = 50 � V are shown in table 1.  

Figure 4 shows examples of ∆ST for which correct and 

incorrect classifications were made. 

 

 

Table 1: Results from the learning set to investigate 

the effect of altering three variables. 

 

Vmin 

(
�

V) 

Tmin 

(s) 

Tthres 

(s) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Score 

(%) 

100 30 40 99.0 88.8 91.1 82.3 

110 30 40 85.6 91.0 89.8 79.6 

100 34 40 94.3 89.8 90.8 81.6 

100 30 36 99.0 88.8 91.1 82.3 

 

 

 

 

 

 

 

 

 

 
Figure 4. Examples from top to bottom of a) ischaemic 

event (correctly classified), b) non-ischaemic event 

(correctly classified), c) ischaemic event classified as 

non-ischaemic, d) non-ischaemic event classified as 

ischaemic. 

 

3.2. Number of threshold crossings 

We maintained Vthres, Vmin, Tthres and Tmin at 50 � V, 

100 
�

V, 40 s and 30 s respectively and investigated the 

effect of altering the threshold for Ncross when Vcross 

equaled 50 � V and 100 � V as shown in table 2 below. 

 

 

Table 2: Results from the learning set to investigate 

the effect of altering Ncross  at two different thresholds. 

 

Ncross Vcross 

( � V) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Score 

(%) 

2 50 62.0 95.3 87.8 75.5 

3 50 77.1 93.4 89.7 79.5 

4 50 84.1 92.0 90.2 80.3 

5 50 87.8 91.0 90.3 80.6 

6 50 91.6 90.4 90.6 81.3 

10 50 97.0 89.2 91.0 82.1 

25 50 99.0 88.9 91.1 82.4 

32 50 99.0 88.9 91.1 82.4 

50 50 99.0 88.9 91.1 82.3 

15 100 93.3 89.3 90.2 80.4 

25 100 95.8 89.1 90.6 81.3 

35 100 97.8 89.0 91.0 81.9 
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3.3. Principal component analysis 

Results for altering Vkltmin and Tkltmin with Vthres, Vmin, 

Tthres and Tmin maintained at 50 � V, 100 � V, 40 s and 30 s 

respectively are shown in table 3 below. 

 

Table 3: Results from the learning set to investigate 

the effect of altering Vkltmin and Tkltmin. 

 

Vkltmin 

( � V) 

Tkltmin 

(s) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Score 

(%) 

150 30 82.9 90.0 88.4 76.9 

200 30 65.2 92.7 86.5 72.9 

160 20 82.3 90.2 88.4 76.9 

 

3.4. Results with test data 

Since none of the developments we performed 

increased sensitivity and specificity we submitted the 

basic algorithm with values for Vthres, Vmin, Tthres and Tmin 

at 50 � V, 100 � V, 40 s and 30 s respectively. We 

received a score of 81.4% and gained an accuracy of 

90.7%. 

 

4. Discussion 

An algorithm designed to accurately distinguish 

ischaemic and non-ischaemic ST changes has been 

developed and tested against expertly annotated reference 

data.  Our algorithm achieved an accuracy of close to 

91% for both the learning and test data sets (test data 

score 81.4%).  

The basic algorithm was found to be sensitive but not 

specific leading us to investigate the effect of algorithm 

amplitude and time thresholds on accuracy and 

specificity for the learning data set. Here, a slight 

improvement in specificity (91% maximum) was 

obtained but at the cost of a marked reduction in 

sensitivity. A further enhancement to the algorithm then 

considered the number of threshold crossings and found 

that sensitivity and specificity values were a trade-off but 

the accuracy (and score) could not be improved 

significantly. Furthermore, the addition of the principal 

components from the ST measurements even slightly 

reduced the performance overall. 

Our algorithm is simple to implement, intuitive, and 

straightforward to reproduce. The results demonstrate 

that the algorithm, based on the premise that ischaemic 

ST changes are large relative to non-ischaemic changes 

and that they are maintained for a period of time, is 

representative. We have shown the algorithm can reliably 

identify ischaemic ST changes in the ECG waveform. 
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