
Computers in Cardiology/PhysioNet Challenge 2004 :

AF Classification Based on Clinical Features

M Lemay�, Z Ihara�, JM Vesin�, L Kappenberger�

� Signal Processing Institute, EPFL, Lausanne, Switzerland
� Service of cardiology, CHUV,Lausanne, Switzerland

Abstract

The Computers in Cardiology / Physionet Challenge

2004 deals with the classification of ECG signals from

AF patients into three categories: types N, S and T

corresponding to AF episodes terminating never, soon and

immediately, respectively. In our study, different features

were used, extracted by the experienced clinician among

the authors (LK) on the supplied training set. Algorithms

were developped to quantify these features from provided

ECG data. A Support Vector Machine was used to classify

these features. In this paper, we present our method, results

and conclusion about this clinically-oriented approach.

1. Introduction

Atrial fibrillation (AF) is the most common type of

human arrhythmia and it is responsable for about one third

of hospitalizations for arrhythmia problems. The diagnosis

of AF has been assessed for years by visual inspection

of the surface electrocardiogram (ECG). In 2001, the

Computers in Cardiology conference proposed a challenge

devoted to the clinical AF problem. The challenge was

to predict the onset of paroxysmal atrial fibrillation by an

automated method. Some methods used were based on the

number and timing of atrial premature complexes[1], on

the quantification of patterns of heart rate dynamics[2], on

analysis of the incidence of premature atrial complexes and

P-wave variability [3] or on the analysis of the R-R time

series[4].

For the 2004 Workshop, CinC and PhysioNet have

continued in the AF area with a new challenge which

consists in the prediction of spontaneous termination of

AF. The automated method has to classify three different

types of AF: non-terminating AF (Group N), AF that

terminates one minute after the end of the record (Group

S) and AF that terminates immediately after the end of

the record (Group T). A learning set of 30 records (two

unspecified simultaneously recorded leads each) of 60

seconds (10 labelled records from each group) and two test

sets were available. The test set A contains 30 records

of groups N and T. The test set B contains 20 records

of groups S and T. These test sets have to be classified

correctly.

We decided to approach the challenge from a clinician’s

point of view. One of us (LK) identified different

observations that characterized the disorganization of F-

waves. Next, we developed the processing tools to quantify

these observations. A support vector machine (SVM)

technique was used to solve the classification problem.

2. Methods

We applied systematically a baseline removal step

consisting of highpass filtering (0.5 Hz) on each signal. An

accurate segmentation is crucial in our approach because

most of our observations are based on time segments

where only atrial activity (AA) is present. These segments

include fibrillation waves (F-waves) or organised P-waves.

The identification procedure first detects the R-waves

using the first and second derivative of the signal. Q-,

S- and T-waves are located by time oriented operations.

Specifically, the T-waves are detected using the time course

of root-mean-square (RMS) values of both leads.

When AF converts to sinus rhythm, the completely

unstructured F-waves tend to be more organized and

structured than P-waves. This behavior is detected by

different clinical observations which lead to the features

used in this study. These are presented in the next 7

subsections.

2.1. F-wave polarity

The first observation is the main polarity of the F-waves

in the AA. When AF is to terminate soon, P-waves tend to

reappear and F-waves are more organized. This translates

into a stable (positive or negative) F-wave polarity which

will be absent in a non-terminating AF. As such the

clinician tries to identify F-wave asymmetry. Figure 1

shows a typical example where no obvious dominant
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polarity can be found.
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Figure 1. Second lead of n04, instable peak direction

Mathematically, Features 1 and 2 (one for each lead)

were expressed by the skewness of the AA segments:
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where ���� are the samples over all AA segments, ��

and � the estimated mean and standard deviation of these

samples and � is the total of samples ���� in all segments.

2.2. R-R intervals

When the ventricular rate is high, AF is more likely to

terminate soon because the heart is thought to be unable to

sustain a high ventricular rate in AF for a long period of

time. We quantified this observation by the mean of R-R

intervals, which gave Feature 3. Moreover, there is often a

marked change (positive or negative) in ventricular rythm

prior to AF termination. This was quantified using a simple

R-R interval analysis: the difference between the mean of

R-R intervals between the first and the last ten seconds

of the record, which gave Feature 4. Such extended R-R

analysis has previously been reported in [2, 4].

2.3. F-wave peak intervals

When AF reverts to sinus rhythm, these intervals

decrease and multiple F-waves reduce to an individual P-

wave. First, a lowpass filter with a cutoff frequency of 8 Hz

was applied. This cutoff frequency is appropriate for the

identification of F-waves: it is high enough not to disturb

the shape of F-waves and low enough to produce a single

peak for each wave. The QRST detector gave the AA

segments. Next, a simple peak detector (the same as for the

QRST detector) was applied to those segments. Figure 2

shows a typical exemple. The bold dashed lines represent

the filtered AA segments and the black dots corresponds

to the identified F-wave peaks. This observation was

quantified by the average number of positive peaks per

time unit (Feature 5).
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Figure 2. First lead of n07, AA intervals

2.4. Atrial activity amplitude

When the AF is more organized in the atrial tissue, the

resulting F-waves in the ECG are higher. To have a correct

estimate of the AA amplitude, we used the F-wave detector

algorithm described above. The identified peaks and the

minima between these peaks were used to compute an

average AA amplitude on both leads, which gave Features

6 and 7.

2.5. Low-frequency modulation of atrial

activity amplitude

The next observation relates to the possible low-

frequency modulation in the amplitude of AA. It has

been observed empirically that prior to AF termination F-

wave amplitude oscillates slowly. Just before AF stops,

slow modulations appear in the AA amplitudes. A good

example is the record t07 as shown in Figure 3 where this

amplitude modulation is clearly visible.
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Figure 3. First lead of t07, AA amplitude periodicity

To quantify this observation, we applied first a bandpass

filter to the signal with cutoff frequencies at 1 and 8 Hz.

The filtering below 1 Hz is used to eliminate any residual

baseline drift. After the filtering, QRST (for the AA

segments) and F-wave detectors were applied to identify

the maximum values of AA. To minimize the frequency

power of the QRST, a saturation operation was applied to
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the signal. This operation is an hyperbolic tangent one:

�
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where ����� is the maximum value in the AA segment.

A morphological envelope detector was used to extract the

upper and lower envelopes. The final amplitude estimate

was obtained by the subtraction of the upper envelope

from the lower one. The power spectrum density of this

amplitude signal was estimated. Features 8 and 9 used are

the total power below 0.6 Hz on both leads.

2.6. Similarity between atrial activities in

different leads

Another observation is a measure of the similarity

between AAs in the two leads. During non-terminatingAF,

the F-waves in the two leads are quite dissimilar, possibly

due to the large number of wavefronts propagating in

the atrial tissue. Before AF returns to sinus rhythm, F-

wave shapes become similar reflecting structurisation of

AF waves. Both leads of records s02 (learning set) display

this similarity (Figure 4). From 55 to 58.5 seconds, the F-

waves are correlated and after 58.5 seconds, the F-waves

are anti-correlated.
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Figure 4. Leads of s02, Similarities among AAs

Mathematically, this observation can be expressed as the

normalized cross-covariance:
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where ��� and ��� are the ��� samples on leads � and � in

the ��� segments. ��� and ��� are the estimated means of

the ��� segment for each of the two leads and �� is the

total of samples in ��� segment, �� is the same for both

leads. The cross-covariance values for each AA segment

were averaged, which gave Feature 10.

2.7. High-frequency power in atrial activity

segments

The final observation is the power of the AA segments

in the high-frequency range. It is assumed that the F-waves

close to conversion in a P-wave have more high-frequency

components than the F-waves in non-terminating AF.

The quantification used was the average of the estimated

spectral density above 20 Hz across the AA segments on

both leads (Features 11 and 12).

2.8. SVM Classification

From the 7 clinical observations, we obtained 12

features: one feature for the F-wave peak intervals, one

for the similarity between atrial activities in different leads

and two features for each of the other observations. A

Support Vector Machine (SVM) approach was used to

classify these features. The SVM tries to separate the

data by an optimal hyperplane. Optimisation is obtain by

maximizing the margin (maximizing the distance between

the hyperplane and the nearest data point of each class).

If the linear boundary is inapropriate, the SVM can map

the input data into a high dimensional space. We used

the Support Vector Machine Toolbox [6] to implement the

SVM algorithm with a linear kernel function and a upper

bound at infinity. The normal vector of the hyperplane for

the N-T classification was : [0.2428 0.7196 5.5665 -0.8466

2.6906 4.6257 0.2393 -0.9238 -3.4938 1.9830 -2.8672

-0.8543]; for the S-T classification, it was : [7.5222

17.3131 10.3262 -3.8598 7.2648 -8.5767 4.3471 -3.0488

2.3011 4.0013 -0.2104 -15.0128] where each axis of the

space dimension is represented by one of the 12 features.

For more details on SVM methods, see [5]. Last, we set

the time intervals parameter of the ECG signals mentioned

in Section 3.

3. Results

3.1. Classification of N and T

For this classification, the SVM was trained on all

records of the learning set, where S and T were grouped.

The best result was obtained with ECG signals restricted

to time intervals between 40 to 60 seconds.

On the test set A: A1, A3, A5, A6, A7, A8, A10, A12,

A13, A15, A16, A19, A20, A21, A23, A26, A28 and A29

were classified as N type. A2, A4, A9, A11, A14, A17,

A18, A22, A24, A25, A27 and A30 were classified as T

type.

This classification resulted in a score of �� out of �� for

the learning set and 20 out of 30 for the test set, which

represents ��� of classification accuracy on learning set

and test set put together.
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3.2. Classification of S and T

For this classification, the SVM was trained on the

groups S and T of the learning set, where s09 was included

in set T (in fact, the record s09 is in sinus rhythm!). The

best result was obtained with ECG signals restricted to

time intervals between 0 to 60 seconds.

On the test set B: B5, B6, B9, B10, B11, B15, B17, B18,

B19 and B20 were clasified as S type. B1, B2, B3, B4, B7,

B8, B12 and B13, B14 and B16 were classified as T type.

For this classification, we obtained a score of �� out

of �� for the learning set and �� out of �� for the test

set, which represents ��� of classification accuracy on

learning set and test set put together.

4. Discussion and conclusions

Our objective was to determine whether an approach

based on clinician’s expertise was able to predict the

termination of AF. At the beginning, the clinician (LK)

looked at the learning set and identified 7 observations

that characterized the disorganisation of F-waves. These

observations were subjectively classified into 3 categories.

These categories were associated to the 3 different

groups. For the test sets, the clinician applied the same

classification and based his final decision on the majority

of classified observations.

The automated method quantified these observations

into 12 features. These features were confirmed by the

clinician’s opinion but the final classification processes

(i.e. mental or SVM based) can hardly be compared.

Our ”clinical” features worked well on the learning set.

This confirms the good fit between the clinical observation

and our quantification procedures. Our classification was

also able to separate each type of AF without any errors

on the learning set. The overall ��� of classification

accuracy was good, but the results on both test sets A and B

(����� and ���, respectively) are below our expectation.

There are some explanations for this. The main reason is

probably that there were not enough records in the test sets

to represent all the characteristics of each of our quantified

clinical observations. It maybe also that, whitout the possi-

bility to build a validation set due to the small size of the

learning set, some overfitting took place. Despite this, our

goal to build an automated method based on a clinician’s

approach was reached.

Acknowledgements

This study was made possible by grants from the

Swiss National Science Foundation (SNSF, 	������� �
�����	
�), the Theo- Rossi-Di-Montelera Foundation

and the Swiss Governmental Commission of Innovation

Technologies (CTI). The authors would also like to thank

the commitees of Computers in Cardiology and PhysioNet

for the opportunity to participate in this motivating

challenge and for the excellent AF database.

References

[1] Zong W, Mukkalama R, Mark RG. A Methodology for

Predicting Paroxysmal Atrial Fibrillation Based on ECG

Arrythmia Feature Analysis. Computers in Cardiology

2001;28:125–128

[2] Yang ACC, Yin HW. Prediction of Paroxysmal Atrial

Fibrillation by Footprint Analysis. Computers in

Cardiology 2001;28:401–404

[3] Moody GB, Goldberger AL, McClennen S, Swiryn SP.

Predicting the Onset of Paroxysmal Atrial Fibrillation:

The Computers in Cardiology Challenge. Computers in

Cardiology 2001;28:113–116

[4] Thong T, McNames J, Aboy M, Goldstein B. Prediction

of Paroxysmal Atrial Fibrillation by Analysis of Atrial

Premature Complexes. IEEE Transactions on Biomedical

Engineering April 2004;51-4:561–569

[5] Gunn SR. Support Vector Machines for Classification and

Regression. Technical Report - University of Southampton

1998

[6] http://www.isis.ecs.soton.ac.uk/resources/svminfo/

Address for correspondence:

Mathieu Lemay

STI - ITS - LTS, EPFL, 1015 Lausanne, Switzerland

mathieu.lemay@epfl.ch

672


