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Abstract 

Assessment of left ventricular (LV) size and function 

from cardiac magnetic resonance (CMR) images requires 

manual tracing of LV borders on multiple 2D slices, 

which is subjective, experience dependent, tedious and 

time-consuming. We tested a new method for automated 

dynamic segmentation of CMR images based on a 

modified region-based model, in which a level set 

function minimizes a functional containing information 

regarding the probability density distribution of the gray 

levels. Images (GE 1.5T FIESTA) obtained in 9 patients 

were analyzed to automatically detect LV endocardial 

boundaries and calculate LV volumes and ejection 

fraction (EF). These measurements were validated 

against manual tracing. The automated calculation of LV 

volumes and EF was completed in each patient in <3 min 

and resulted in high level of agreement with no 

significant bias and narrow limits of agreement with the 

reference technique. The proposed technique allows fast 

automated detection of endocardial boundaries as a basis 

for accurate quantification of LV size and function from 

CMR images.  

 

1. Introduction 

It is widely agreed that comprehensive evaluation of 

cardiac function for the diagnosis and therapeutic follow 

up of myocardial pathologies requires a wide range of 

information. Thus, left ventricular (LV) volume over time 

curves provide clinically important information on LV 

dynamics, beyond the traditional ejection fraction (EF), 

which include direct insight into LV contraction and 

relaxation properties closely related to pathophysiology 

of various disease states. Cardiac Magnetic Resonance 

(CMR) provides noninvasive, high-resolution, radiation-

free, dynamic imaging of the heart that allows accurate 

and reproducible evaluation of LV volumes throughout 

the cardiac cycle. Over the last decade, this methodology 

has become the standard reference technique for LV 

volume and EF measurements, against which other 

techniques are validated [1,2].  

Although automated LV endocardial boundary 

detection is available in commercial software for analysis 

of CMR images, it is usually based on algorithm 

parameters that are sensitive to image quality and 

frequently depend on the specific imaging protocol [3]. 

Since optimization of these parameters for each 

individual pulse sequence is not possible, the computation 

of LV volumes and EF in clinical practice relies on 

frame-by-frame manual tracing of endocardial contours 

on multiple short-axis planes. This procedure is 

subjective, tedious, time-consuming and experience-

dependent. Furthermore, its accuracy relies on 

geometrical models, such as disk-area summation, which 

may not always yield accurate results.  

Accordingly, our aim was to develop and test a 

technique for fast, automated, dynamic segmentation of 

CMR images, that would take into account image 

attributes specific to each pulse sequence.  

Our approach uses a region-based level set model 

described by Chan and Vese in [4]. This segmentation 

model is based on the minimization of an energy function 

containing information regarding the grey level values of 

the pixels into the image. The minimization of this energy 

function leads to the segmentation of the image in regions 

for which the difference in the grey level intensity 

average inside and outside is maximized. 

In our model we keep the region-based approach and 

embed in the segmentation model the a priori knowledge 

of statistical distribution of grey levels in CMR data: 

therefore the proposed method drives the curve evolution 

to achieve a maximum likelihood segmentation of the 

target with respect to the statistical distribution law of 

image pixels. We consider the noise in CMR images to 

have a Rician probability density function that approaches 

a Gaussian function when pixel intensity is higher than 

the noise level [5,6]. Our segmentation method was 

implemented in the 3D domain and requires a simple 

definition of a reference point of view within the data as 

initial condition for the dynamic detection of the LV 

endocardial boundaries throughout the cardiac cycle.  
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2. Methods 

2.1. CMR imaging 

CMR data were obtained in 9 patients using a 1.5 

Tesla scanner (General Electric) with a phased-array 

cardiac coil. ECG-gated localizing spin-echo sequences 

were used to identify the long-axis of the left ventricle. 

Steady-state free precession dynamic gradient-echo mode 

(FIESTA) was then used to acquire images during 10 to 

15 sec breath-holds. Cine-loops were obtained in 6 to 10 

short-axis slices, from the atrio-ventricular ring to the 

apex (9 mm slice thickness, no gaps) with a temporal 

resolution of 20 frames per cardiac cycle.  

2.2. Image analysis 

LV slices were selected for analysis beginning with the 

highest basal slice where the LV outflow tract was not 

visible, and ending with the lowest apical slice where the 

LV cavity was visualized. In every slice, LV endocardial 

contours were manually traced frame-by-frame (MASS 

Analysis, GE) with the papillary muscles included in the 

LV cavity, by an experienced investigator. This resulted 

in LV cross-sectional area for each slice over time. Global 

LV volumes were computed throughout the cardiac cycle 

using a disk-area summation method, from which end-

diastolic and end-systolic volumes (EDV and ESV, 

respectively) were obtained as the maximum and 

minimum volumes and EF was calculated as (EDV-

ESV)/EDV •100. 

In addition, the CMR datasets were analyzed using 

custom software for automated LV endocardial contours 

detection. For each frame, the 2D CMR slices were 

stacked and 3D segmentation was automatically 

performed throughout the cardiac cycle to obtain 

endocardial contours. This was achieved by using a 

modified region-based model, in which a level set 

function minimizes a functional l(I,C) containing 

information regarding the Gaussian probability density 

distribution of the gray levels p(I): 
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where I(x,y,z) is the image intensity in the CMR dataset 

defined in Ω⊂ R
3
, µ and σ are the average and standard 

deviation of I(x,y,z), respectively. 

The energy functional l(I,C), in which we included the 

information regarding the statistical distribution p(I) of 

grey levels in CMR data was defined as:  
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where C is a surface partitioning the dataset in two 

regions, inside the surface C, Ωi(C), and outside C, Ωo(C) 

and ε⋅length(C) is a regularization term [7]. This 

functional reaches its maximum when the curve C has 

partitioned the dataset I(x,y,z) in maximally homogeneous 

3D regions.  

To obtain the first variation of l(I,C) we introduced 

the level set function ϕ:Ω→R and implicitly defined the 

curve C as the zero level set of ϕ [8,9]. The initial 

condition for the evolution of the level set function ϕ was 

computed by manually selecting one point inside the LV 

chamber in one mid slice of the end diastolic dataset. 

From this reference point, the initial surface was 

calculated as: 
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where (x0,y0) is the reference point chosen by the 

operator, zslice is the height of the mid slice, and R is a 

constant term that changes automatically for each frame 

in the cardiac cycle.  

Starting from this initial surface, this function 

evolves guided by equation (2) for each frame. The 

evolution process stops when the region probability 

terms of the inside regions equal the terms of outside 

regions, up to the regularization of the surface. At the 

end of the evolution, the undesired detected regions 

outside and inside the LV chamber, characterized by the 

same noise distribution, are automatically removed from 

the zero level set function. This deletion does not require 

any manual intervention and is fully automated, since 

the coordinates of the selected point is known.  

This procedure results in the detection of LV 

endocardial boundaries throughout the cardiac cycle. To 

be consistent with the reference, volumes inside the 

detected surfaces were computed using the disk-area 

summation method. From these volume-time curves, 

EDV and ESV were obtained as the maximum and 

minimum volumes reached during in the cardiac cycle 

and EF was calculated. 

Matlab 6.1 (The MathWorks Inc.) environment was 

used for software implementation. To speed up the 

segmentation procedure, the region-based algorithm was 

implemented in the C++ language.  

2.3. Statistical analysis 

Statistical analyses were performed using Matlab 

software (The MathWorks Inc.). Comparisons between 

automated and manual measurements of EDV, ESV and 

EF included linear regression and Bland-Altman analyses. 

The significance of differences between the two 

techniques was tested using paired t-test. P-values <0.05 

were considered significant. In addition, percent 

discordance between LV volumes obtained by manual 

tracing and the automated analysis was calculated for 

each pair of volume curves as the point-by-point sum of 
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absolute differences between the corresponding values, 

normalized by the point-by-point sum of the manually 

traced volumes. 

3. Results 

The operator selects one point in the image (fig. 1,A) 

and the automated analysis of a set of images was 

completed (fig. 1, B and C) in less than 3 min per patient 

on a personal computer (AMD Athlon XP 2800). In 

contrast, manual tracing of the same images using the 

standard methodology required between 10 and 20 

minutes for each patient. 

Figure 2 shows an example of the LV endocardial 

contours detected at one phase of the cardiac cycle at 

different levels from LV base to apex. Importantly, 

papillary muscles and trabeculae were automatically 

included in the blood pool. Volume-time curves obtained 

in one patient by manual tracing and by the automated 

technique are shown in Figure 3.  

Linear regression analysis (Figure 4, top panels) 

between the automated technique and the manual 

reference volume values resulted in excellent correlation 

coefficients and regression slopes of 1 for both EDV and 

ESV (EDV: r=0.99, y=x+4; ESV: r=0.98, y=x-3.6). High 

correlation and regression slope near 1 were also obtained 

for EF (r=0.92, y=1.1x+0.03). 

Bland-Altman analysis (Figure 4, bottom panels) 

showed no significant biases between the automated 

measurements and the manual reference technique for 

EDV, ESV and EF (bias: 1ml; -3ml; 2%, respectively). 

These biases reflected systematic errors of 0.9%, -3.8% 

and 4.2% of the corresponding mean values. The 95% 

limits of agreement were relatively narrow (EDV: 10ml; 

ESV: 14ml; EF: 11%), providing additional support to the 

tight agreement between the two techniques. The 

calculated percent discordance was only 6.2±1.2%. 

4. Discussion and conclusions 

CMR imaging has become the reference technique for 

accurate measurements of LV volumes and function. In 

clinical practice, the extraction of these parameters is 

performed by manually tracing LV endocardial contours 

frame-by-frame on each slice and by the application of 

geometric modeling. New, efficient and robust algorithms 

need to be developed and tested for automated frame-by-

frame endocardial contour detection from dynamic CMR 

images to become feasible in the majority of patients. 

In this paper we described a technique representing a 

case of the minimal partition problem that can be 

formulated and solved using the level set method [8,9]. 

Many approaches based on non-linear partial differential 

equations and level set techniques have been used to 

solve segmentation problems. Our model allows us to 

detect objects with boundaries that are either not 

necessarily defined by a gradient or are very smooth, thus 

rendering the classical active contour models useless. In 

addition, our model can be applied to a variety of images 

once the statistical distribution of noise in the image is 

known [10,11], with no need for a priori knowledge of 

the shape of the objects to be detected. Importantly, only 

one parameter needs to be set in the model and it allows 

choosing the maximum curvature admissible in the 

segmentation: the regularization term that depends on this 

parameter prevents the “rupture” of the interface. 

 
Figure 1. Example of the automated endocardial surface 

detection in one slice: (A) initial point selection; (B) result of 

the maximum likelihood segmentation; (C) final endocardial 

contour after the automatic deletion of the undesired detected 

regions outside and inside the LV chamber. 

 
Figure 2. Example of the detected endocardial contours in one 

frame, from LV base (upper left) to the apex (bottom right). 
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Figure 3. Example of LV volume time curves obtained in one 

patient, by manual tracing and custom software 
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Figure 4. Linear regression (top) and Bland-Altman (bottom) analyses of LV EDV, ESV and EF obtained by the automated technique 

compared to the standard manual reference technique. 

 

 

The use of the disk-area summation method for 

volume computation could be viewed as a limitation of 

this study. However, this method is routinely used in 

clinical practice and is considered the gold standard for 

LV volume measurements.  

In summary, the proposed approach is considerably 

faster than manual tracing since the interactive part of the 

procedure consists of selection of one point inside the LV 

cavity, while border detection throughout the cardiac 

cycle is fully automated. In this initial feasibility study, 

this technique was found highly accurate compared to the 

standard reference methodology. Further testing in larger 

groups of patients is necessary. 
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