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Abstract 

We introduce an improved technique for selectively 

quantifying cardiac sympathetic and parasympathetic 

nervous function based on the identification of the heart 

rate (HR) baroreflex impulse response from non-invasive 

cardio-respiratory measurements. We have tested the 

technique with respect to 24 humans breathing randomly 

or spontaneously under selective pharmacological 

autonomic blockade. Our results show that the technique 

performs much better than traditional HR power spectral 

indices in terms of predicting the known drug effects and 

is effective during spontaneous breathing.  

1. Introduction 

Over two decades ago, Cohen and co-workers 

popularized power spectral analysis of resting heart rate 

(HR) variability by showing that it could provide specific 

measures of the cardiac autonomic nervous system (ANS) 

[1,2].  Using selective pharmacological autonomic 

blockade, these investigators specifically demonstrated 

that the high frequency (HF, 0.15-0.4 Hz) power of HR 

variability is mediated by the parasympathetic nervous 

system (PNS), whereas the low frequency (LF, 0.04-0.15 

Hz) power is jointly mediated by the β-sympathetic 

nervous system (SNS) and PNS.  Today, the HF power of 

HR variability is widely accepted as a useful index of the 

PNS, while the LF power, expressed in normalized units, 

and the ratio of the LF power to HF power are considered 

by some to be indices of the SNS [3].   

Despite their popularity, the HR power spectral indices 

suffer from two limitations.  The first limitation is that 

neither the normalized LF power nor the LF/HF power 

provides an effective index of the SNS, because the LF 

power reflects the complex functioning of both branches 

of the ANS.  As a result, the LF/HF power is considered 

by others to be an index of sympatho-vagal balance [3].  

The second limitation is that none of the HR power 

spectral indices is truly specific to the ANS, since HR is 

just one of its outputs.  For example, it is well known that 

the ultimate source of the HF power is respiration [2].  

Thus, changes in the HF power may reflect changes in 

respiratory effort as well as ANS functioning.  

Consequently, investigators have recently sought 

improved ANS indices based on more sophisticated 

signal processing analyses of beat-to-beat cardiovascular 

variability.  Vetter et al. proposed to selectively quantify 

the SNS and PNS using blind source separation [4,5].  

However, this approach assumes that the two branches of 

the ANS operate independently of each other, even 

though they are known to be reciprocally related [6].  

Chon and co-workers proposed to determine the separate 

contributions of the SNS and PNS in modulating HR 

based on a nonlinear expansion [7].  Remarkably, these 

investigators were able to show that the first two principal 

dynamics modes of the first- and second-order Volterra 

kernels derived from HR variability just happened to 

correspond to PNS and SNS functioning in their datasets. 

These recent studies have sparked our own interest in 

pursuing specific indices of SNS and PNS function.  We 

have recently proposed a non-invasive technique for 

selectively quantifying the SNS and PNS based on the 

HR baroreflex impulse response, which relates variability 

in arterial blood pressure (ABP) to HR [8].  More 

specifically, first, the impulse response is estimated by 

applying system identification to measured beat-to-beat 

fluctuations in HR, ABP, as well as respiratory activity in 

terms of instantaneous lung volume (ILV).  Then, the 

estimated impulse response is decomposed into SNS and 

PNS components based on known physiology.  Finally, 

scalar indices of each ANS branch are computed from the 

respective impulse response components.  We have 

previously demonstrated the promise of this technique in 

humans following a random-interval breathing protocol 

[8].  The purpose of this protocol was to broaden the 

spectral content of the measurements for more reliable 

system identification [9]. 

In this study, we improve the system identification 

analysis by employing a recently developed, weighted 

principal component regression method [10] and propose 

more specific indices of ANS function.  We then conduct 

more thorough testing of the refined technique, while 

comparing it to traditional HR power spectral indices, 

based on two previously collected datasets comprising 
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cardio-respiratory measurements from 14 healthy humans 

breathing randomly and 10 healthy humans breathing 

spontaneously under selective pharmacological 

autonomic blockade [11,12].   

2. The technique 

Our basic idea for developing specific indices of SNS 

and PNS function is to exploit the information reflected in 

the dynamic couplings between beat-to-beat fluctuations 

in multiple cardio-respiratory signals.  This idea stems 

from the experimental findings of three previous studies 

[13,14,15].  These studies have generally shown that 1) 

the couplings responsible for modulating resting HR 

fluctuations are governed, to first order, by linear and 

time-invariant relationships [14]; 2) the impulse response 

coupling fluctuations in ABP to HR (ABP→HR), which 

characterizes the HR baroreflex, and the impulse response 

coupling fluctuations in ILV to HR (ILV→HR), which is 

responsible for mediating the respiratory sinus arrhythmia 

phenomenon, are exclusively mediated by both branches 

of the ANS [13]; and 3) the initial, fast dynamics in the 

ABP→HR and ILV→HR impulse responses are 

specifically reflective of the PNS [13,15].   

According to the above studies, a technique for 

selectively quantifying the SNS and PNS may be based 

on the ILV→HR impulse response and/or the ABP→HR 

impulse response.  Indeed, we have previously proposed 

techniques using each of these impulse responses [8,16].  

However, accurate estimation of the ILV→HR impulse 

response may be more reliant on the random-interval 

breathing protocol, which may not always be viable in 

practice (e.g., intensive care unit).  We therefore describe 

here an improved technique based on the ABP→HR 

impulse response.  This technique is specifically 

implemented in three steps (Figures 1 and 2).  

In the first step, the ABP→HR impulse response is 

estimated by applying parametric system identification to 

beat-to-beat fluctuations in HR, ABP, and ILV according 

to the block diagram of Figure 1.  In this way, the 

technique is able to 1) account for the known correlation 

between the ABP and ILV inputs to HR by including ILV 

as a second input (i.e., the ILV→HR impulse response is 

simultaneously identified) and 2) disentangle the 

feedback baroreflex effects of fluctuations in ABP on HR 

from the feedforward mechanical effects of fluctuations 

in HR on ABP through the imposition of causality [17].  

The block diagram of Figure 1 also includes a perturbing 

noise source NHR, which is also estimated and represents 

the residual HR variability not accounted for by the two 

impulse responses.  The block diagram is mathematically 

represented here by the following dual-input equation: 
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where t is discrete time, the terms m, n’, n, and p limit the 

number of parameters in the equation, and WHR is the 

unmeasured residual error.  The sets of parameters {h(i), 

g(i)} specify finite impulse response (FIR) 

approximations respectively characterizing ABP→HR 

and ILV→HR, while the residual error WHR and the set of 

parameters {d(i)} fully define NHR.  (Note that causality is 

imposed here by virtue of forcing the h(i) parameters to 

zero for non-positive values of i.)  The parameters are 

estimated from ~6-min intervals of beat-to-beat 

fluctuations in normalized HR, ABP, and ILV signals 

sampled at 1.25-1.5 Hz based on a weighted principal 

component regression method [10].  This method 

succinctly represents the FIR approximations, 

asymptotically, with exponentially varying sinusoidal 

basis functions that reflect the dominant frequency 

content of the inputs.  Thus, the number of unknown 

parameters for estimation is dramatically reduced and 

reliable system identification may potentially be achieved 

even without the random-interval breathing protocol. 

 

 

Figure 1.  Block diagram illustrating how the technique 

identifies the ABP→HR impulse response. 

In the second step, the estimated ABP→HR impulse 

response is separated into SNS and PNS components 

based on the prior studies described above.  More 

specifically, the initial downstroke of the ABP→HR 

impulse response is regarded as the first part of the PNS 

component (Figure 2).  The time interval of the initial 

downstroke is precisely defined to be from time zero to 

the time of the minimum impulse response value, which 

has been shown to be a specific index of the PNS [13].  

The remaining part of the PNS component (i.e., the return 

of this stable component to zero), which is usually 

obscured by the subsequent SNS component, is assumed 

to be symmetric to the visible first part (Figure 2).  This 

assumption is based on a previous canine study showing 

that the impulse response characterizing the HR response 

to pure external vagal stimulation may be approximated 

as an isosceles triangle whose first leg is similar in timing 

to the initial downstroke of the ABP→HR impulse 
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response [15].  The SNS component is then established 

by subtracting the total PNS component from the entire 

ABP→HR impulse response (Figure 2). 

 

 

Figure 2.  Diagram illustrating how the technique derives 

PNS (P) and SNS (S) indices from the identified 

ABP→HR impulse response.   

In the third step, scalar indices representing SNS and 

PNS function are established by computing the two-norm 

of the SNS (S) and PNS (P) impulse response 

components (Figure 2).  In this way, in contrast to the HR 

power spectral indices and the indices of our original HR 

baroreflex technique [8], the S and P indices reflect only 

the ANS and not their inputs.    

3. Experimental evaluation 

3.1. Human cardio-respiratory data 

We evaluated the improved technique with respect to 

two existing human cardio-respiratory datasets collected 

under various postures and selective pharmacological 

autonomic blockade.  The datasets are described in detail 

elsewhere [11,12].  Here, we briefly present those aspects 

of the two datasets that are relevant to the present study.   

The first dataset comprises surface ECG, ABP (radial 

artery catheter), and ILV (chest-abdomen inductance-

plethysmography) recordings from 14 young and healthy 

humans.  Throughout the recordings, the subjects initiated 

each respiratory cycle based on a sequence of randomly 

spaced audible tones.  The recordings for half the subjects 

were obtained under the following conditions:  1) supine, 

control; 2) standing, control; 3) supine, atropine; 4) 

standing, atropine; 5) supine, double blockade 

(propranolol+atropine); and 6) standing, double blockade.  

The recordings for the remaining subjects were obtained 

similarly with the two drugs given in reverse order. 

The second dataset includes surface ECG, ABP 

(finger-cuff photoplethysmography), and ILV (chest-

abdomen inductance-plethysmography) recordings from 

ten young and healthy humans.  The recordings were 

obtained on two separate days while the subjects were 

breathing spontaneously.  On one day, the recordings 

were obtained under the following conditions:  1) 4° 

head-down tilt, control; 2) supine, control; 3) supine, 

propranolol; 4) supine, double blockade; and 5) 4° head-

down tilt, double blockade.  On the other day, the 

recordings were obtained under the following conditions: 

1) supine, control; 2) 30° upright tilt, control; 3) 30° 

upright tilt, atropine; 4) 30° upright tilt, double blockade; 

and 5) supine, double blockade.  

3.2. Data analysis 

A HR tachogram was constructed from each surface 

ECG as described in [18].  The technique was then 

applied to each set of HR, ABP, and ILV signals as 

described above to arrive at the S and P indices.  For 

comparison, power spectral analysis was applied to each 

HR tachogram as described in [18], and the HF, LF/HF, 

and normalized LF (LF/(LF+HF)) powers were 

computed.  Finally, paired t-tests were performed to 

determine if the ANS indices were altered from the 

control condition to each drug condition.  A p<0.05 was 

considered statistically significant.      

4. Results  

Tables 1 and 2 summarize the group average results of 

the P and S indices and the HF and LF/HF powers from 

the first and second datasets, respectively.  These tables 

show that the P index was able to correctly predict the 

expected effects of the drugs on the PNS for all 12 of the 

performed statistical comparisons, while the HF power 

was in error as an index of the PNS for three of the 12 

comparisons.  The tables also indicate that the S index 

was able to correctly predict the expected effects of the 

drugs on the SNS for nine out of the 12 comparisons.  In 

contrast, the LF/HF power was in error as an index of the 

SNS for seven out of the 12 comparisons and may 

actually be a somewhat better marker of sympatho-vagal 

balance.  Moreover, though not shown here, the 

normalized LF power was likewise an ineffective index 

of the SNS.  Note that the S index twice predicted a 

reduction in SNS functioning following the 

administration of atropine.  It is possible that these 

changes are real (i.e., not in error) as a result of a 

compensatory mechanism aiming to counteract the 

increase in HR.  Overall, regardless of the chosen level of 

statistical significance, the tables indicate that the P and S 

indices are substantially better markers of the SNS and 

PNS than traditional HR power spectral indices. 

5. Summary and conclusion  

In summary, we have refined a non-invasive 

technique for selectively quantifying SNS and PNS 
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function based on the identification of the HR baroreflex 

impulse response and known physiology.  We have tested 

the technique in 24 human subjects breathing randomly or 

spontaneously under selective pharmacological 

autonomic blockade.  Our results show that the technique 

is much better than HR power spectral analysis in terms 

of correctly predicting the known drug effects and is 

effective even during spontaneous breathing.  With 

further successful testing, the technique may ultimately 

be employed to help guide therapy in various diseases 

such as diabetic autonomic neuropathy and heart failure. 

 

Table 1. First dataset (random-interval breathing) results. 
Supine 

 C A C Pr C DB 

P 7.2±±±±1.1 2.0±±±±0.50.028 8.7±±±±2.1 10.6±±±±1.70.410 8.1±±±±1.3 1.7±±±±0.40.001 

HF 8.7±±±±2.0 0.2±±±±0.10.024 5.6±±±±1.4 4.9±±±±1.30.040 6.7±±±±1.3 0.1±±±±0.020.001 

S 4.9±±±±1.0 2.4±±±±0.70.136 4.0±±±±0.5 5.2±±±±0.70.100 4.7±±±±0.6 1.2±±±±0.20.0004 

LF/HF 2.8±±±±0.2 9.3±±±±5.00.248 3.3±±±±0.4 2.6±±±±0.30.025 3.1±±±±0.3 2.1±±±±0.60.121 

Standing 

 C A C Pr C DB 

P 4.7±±±±0.3 2.7±±±±0.50.0401 4.6±±±±0.7 3.8±0.50.432 4.6±0.4 1.7±0.20.0000 

HF 7.7±±±±1.5 1.4±±±±0.50.020 5.4±±±±1.1 2.3±±±±0.30.010
 

6.4±±±±0.9 1.2±±±±0.30.0001
 

S 4.7±±±±0.6 1.6±±±±0.20.003 4.1±±±±0.4 2.2±±±±0.50.018 4.1±±±±0.3 1.8±±±±0.20.0003 

LF/HF 5.7±±±±0.4 13.1±±±±5.70.273
 

5.7±±±±0.8 4.5±±±±0.60.088
 

5.9±±±±0.5 11.3±±±±3.30.095
 

 

Table 2. Second dataset (spontaneous breathing) results. 
 Supine Supine Head-down tilt 

 C Pr C DB C DB 

P 9.9±±±±3.5 2.7±±±±0.50.066
 

11.6±±±±3.3 0.02±±±±0.010.012
 

11.1±±±±2.4 0.4±±±±0.10.002
 

HF 2.1±±±±0.4 2.9±±±±1.80.598
 

2.1±±±±0.4 0.1±±±±0.020.004
 

1.8±±±±0.4 0.1±±±±0.010.002
 

S 10.1±±±±2.7 2.9±±±±1.10.034
 

9.0±±±±2.1
 

0.4±±±±0.20.004
 

9.4±±±±2.2 0.6±±±±0.20.005
 

LF/HF 1.0±±±±0.1 0.8±±±±0.10.113
 

1.2±±±±0.2 0.8±±±±0.10.157
 

1.0±±±±0.3 0.9±±±±0.10.678
 

 Upright tilt Upright tilt Supine 

 C A C DB C DB 

P 10.8±±±±2.1
 

2.1±±±±0.70.003
 

10.2±±±±2.2 0.8±±±±0.30.003
 

11.1±±±±2.9 0.5±±±±0.20.011
 

HF 2.5±±±±0.7 0.2±±±±0.010.007
 

2.4±±±±0.6 0.2±±±±0.030.004
 

1.9±±±±0.8 0.2±±±±0.030.068
 

S 9.3±±±±1.8 2.1±±±±0.50.007
 

9.1±±±±2.0 0.7±±±±0.30.003
 

11.9±±±±2.3 0.5±±±±0.20.003
 

LF/HF 1.2±±±±0.1 1.7±±±±0.30.134
 

1.2±±±±0.1 0.9±±±±0.10.013
 

1.3±±±±0.3 0.9±±±±0.10.290
 

C is control; A, atropine; Pr, propranolol; and DB, double 

block.  Values are (mean±SE)*10 
p-value 

(unitless) for P 

and S,  and (mean±SE) 
p-value

 (bpm
2
) for HF and LF/HF.  
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