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Abstract

Intra-cardiac pressure gradients (ICPG) are usually es-

timated by post-processing of flow Color Doppler M-mode

images (CDMMI) by using a sequence of processing steps.

We propose a novel image processing method which gives

a single-step approximation of the ICPG image, based on

a simple, yet specifically developed, Support Vector Ma-

chine (SVM) algorithm. Our method only requires the SVM

estimation of the blood velocity from the CDMMI. Given

that ICPG images are obtained by deterministic opera-

tors (Euler’s momentum equation) on the blood velocity,

the ICPG estimation is a simple model that consists of the

same coefficients and the operator applied to the Mercer’s

kernel. A diverse-width Mercer’s kernel is proposed, as

an alternative to conventional Radial Basis Function ker-

nel. Simulations on a synthetic model and approximations

of a real example image, trained with up to 10% of the

pixels, show the possibilities of this new single-step post-

processing method.

1. Introduction

Doppler echocardiography is probably the most useful
noninvasive technique to assess cardiovascular function
[1]. Not only the blood velocity, but also intracardiac pres-
sure differences can be obtained noninvasively by using
ultrasound images under certain conditions. The simpli-
fied Bernouilli equation yields the transvalvular pressure
difference from Doppler measurements of blood jet veloc-
ity. More recently, the noninvasive estimation of intrac-
ardiac pressure gradients (ICPG) from color Doppler M-
mode images (CDMMI) has been successfully addressed,
which allows the estimation of a number of clinically use-

ful cardiac indices [2, 3, 4]. Mathematical derivation of
color-Doppler velocity-data is strongly dependent on noise
and artifacts, and indices numerically derived from these
images are heavily influenced by the lack of signal ("black
holes") and by the noise. Conventional approaches to
ICPG estimation use a two-steps procedure: first, CDMMI
is restored (splines or image filtering), and second, the nec-
essary operators are applied to provide with ICPG image
(spline-based transformations or numerical image process-
ing).

We propose to make a single-step, robust approximation
to ICPG images by using Support Vector Machines (SVM)
[5]. As it will be seen, the final expression for the CDMMI
approximation with SVM has an easy to handle expres-
sion, as it depends only on a sparse set of coefficients and
the used Mercer’s kernel. Therefore, ICPG estimation can
be readily obtained from the same set of coefficients as the
CDMMI estimation and by simple operators transforming
the kernel.

The draw of the paper is as follows. In the next sec-
tion, the analytical equations for the noninvasive derivation
of ICPG images from CDMMI are introduced. Then, the
SVM model is proposed and developed. Simulations and
application on an image example are presented.

2. ICPG estimation from CDMMI

The estimation of ICPG from flow CDMMI is based on
the one-dimensional Euler’s momentum equation. This ex-
pression represents the balance between the driving pres-
sure force p and the inertial and convective forces associ-
ated with acceleration of a fluid along a linear streamline s
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[2], this is:

∂p(s, t)

∂s
= −ρ

(

∂vb(s, t)

∂t
+ vb(s, t)

∂vb(s, t)

∂s

)

(1)

where vb(s, t) is the blood velocity along the streamline,
assuming one-dimensional flow propagation, and ρ is the
blood flow density (usually ρ = 1.05). If Doppler inter-
rogation is fully coaxial to flow, a color Doppler M-mode
recording provides the full spatio-temporal velocity distri-
bution of the streamline. With this method, the ICPG can
be calculated in the absence of a restrictive orifice, thus
providing us with the real driving forces of flow within the
heart. Two terms can be distinguished in (1), which are

δpi(s, t) = −ρ
∂vb(s,t)

∂t
(2)

δpc(s, t) = −ρvb(s, t)
∂vb(s,t)

∂s
(3)

known as inertial and convective pressure gradients, re-
spectively, so that ∂p(s,t)

∂s
= δpi(s, t) + δpc(s, t).

By spatial integration of (1), instantaneous pressure dif-
ference between any two intracardiac stations along the
streamline can be obtained. For instance, if we choose the
left atrium and the LV apex, and by constraining the obser-
vation time to diastole, we obtain the full LV transmitral
filling ICPG [3]. In this paper, we will limit to the estima-
tion of ICPG images, the obtention of pressure difference
curves being straightforward.

3. SVM model for ICPG image estima-

tion

The proposed image model for ICPG estimation uses
a dual signal model [5] for flow CDMMI approximation.
Let vb(s, t) and {Vi,j = v(iδs, jδt); i = 1, · · · , Ns; j =
1, · · · , Nt} denote the velocity field and the acquired im-
age (Nt × Ns matrix), respectively. Also, let [i, j] denote
the image coordinates of pixel Vi,j , and let I denote the
set of coordinates for all the image pixels. Then, by using
some criterion, I can be split into subsets, Itrain and Itest,
to be used for training and testing the model.

The SVM model for CDMMI estimation uses the fol-
lowing expression for nonlinear regression of each pixel as
a function of a nonlinear transformation of its image coor-
dinates:

Vi,j =< w,φ([i, j]) > +b + ei,j (4)

with [i, j] ∈ Itrain, where ei,j is the model approxima-
tion error for the pixel; φ([i, j]) is a nonlinear application
of coordenite vector [i, j] to a high-dimensional (say P -
dimensional) feature space F; and b is a bias term. A linear
regression for the pixel value is given by the dot product of
nonlinearly transformed pixel coordinates and w ∈ F.

Given this image model, we propose to use the ε-Huber
robust cost [6], which is given by

L(ei,j) =











0, |ei,j | ≤ ε
1
2δ

(|ei,j | − ε)2, ε ≤ |ei,j | ≤ eC

C(|ei,j | − ε) − 1
2δC2, |ei,j | ≥ eC

(5)
where eC = ε + δC; ε is the insensitive parameter, and
δ and C control the trade-off between regularization and
losses. The ε-insensitive zone ignores errors lower than ε;
quadratic cost zone uses the L2-norm of errors, which is
appropriate for Gaussian noise; and linear cost zone limits
the effect of outliers. By following the conventional SVM
methodology, the previous loss function is regularized with
the squared norm of model coefficients, and primal prob-
lem consists of minimizing

1

2

P
∑

p=1

w2
p +

1

2δ

∑

[i,j]∈Itrain

1

(ξ2
i,j + ξ⋆2

i,j)+

+ C
∑

[i,j]∈Itrain

2

(ξi,j + ξ⋆
i,j) −

∑

[i,j]∈Itrain

2

δC2

2

(6)

with respect to wp, {ξ(⋆)
i,j } (notation for both {ξi,j} and

{ξ⋆
i,j}), and b, and constrained to

Vi,j− < w, φ([i, j]) > −b ≤ ε + ξi,j (7)

−Vi,j+ < w, φ([i, j]) > +b ≤ ε + ξ⋆
i,j (8)

and to ξi,j , ξ
⋆
i,j ≥ 0, for [i, j] ∈ Itrain; {ξ(⋆)

i,j } are slack

variables or losses, and they handle the residuals accord-
ing to the robust cost function; and Itrain

1 , Itrain
2 are the

subsets of pixels for which losses are in the quadratic or in
the linear cost zone, respectively.

Similar derivations of the dual functional can be found
in the literature [5, 6]. In brief, by including constraints
(7),(8) into (6), the primal-dual functional (or Lagrange
functional) is obtained. By making zero the gradient of
the Lagrangian with respect to the primal variables [6],
and by using the Karush-Khun-Tucker conditions, several
manipulations can be done. The correlation matrix of in-
put space pixel pairs can be identified, and denoted as
R([i, j], [k, l]) ≡< φ([i, j]),φ([k, l]) >. The dual prob-
lem can now be obtained and expressed in matrix form, as
the maximization of

−
1

2
(α − α⋆)T [R + δI] (α − α⋆) + (α − α⋆)T V −

− ε1T (α + α⋆)

(9)

constrained to C ≥ α
(⋆)
i,j ≥ 0, where αi,j , α

∗
i,j are the

Lagrange multipliers corresponding to (7),(8); and α(⋆) =
[α

(⋆)
i,j ], V = [Vi,j ], for [i, j] ∈ Itrain are column vectors.
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After obtaining α(⋆), the velocity for a pixel at [k, l] is

V̂k,l =
∑

[i,j]∈Itrain

βi,j < φ([i, j]),φ([k, l]) > +b (10)

with βi,j = αi,j − α⋆
i,j , which is a weighted function of

the nonlinearly observed times in the feature space. Note
that only a reduced subset of the Lagrange multipliers is
nonzero, which are called the support vectors, and the CD-
MMI estimation is built only with them.

A Mercer’s kernel is a bivariate function that is equiv-
alent to the calculation of a dot product in F [5], this is,
K([i, j], [k, l]) =< φ([i, j]),φ([k, l]) >. However, we do
not need to know explicitly neither F nor the nonlinear ap-
plication, but still the dot products in F can be readily cal-
culated with the kernel. A usual nonlinear Mercer’s kernel
is the Gaussian (RBF) kernel, given by KG([i, j], [k, l]) =

exp
(

‖[i,j]−[k,l]‖2

−2σ2

)

where σ is the width parameter. How-

ever, given that different magnitudes (space and time) are
involved, we propose the following (D-RBF) kernel for M-
mode Doppler images:

KD([i, j], [k, l]) = exp

(

|i − k|2

−2σ2
s

)

exp

(

|j − l|2

−2σ2
t

)

where σs, σt account for the scaling of spatial and temporal
dimensions, respectively.

Thus, the CDMMI model can finally be expressed as

V̂k,l =
∑

[i,j]∈Itrain

βi,jK([i, j], [k, l]) + b (11)

and the expression for the estimated inertial pressure gra-
dient will be simply given by

δ̂i
k,l = −ρ

∑

[i,j]∈Itrain

βi,jK
t([i, j], [k, l]) (12)

whereas the estimated convective component will be

δ̂c
k,l = −ρ





∑

[i,j]∈Itrain

βi,jK([i, j], [k, l]) + b



 ·

·





∑

[m,n]∈Itrain

βm,nKs([m,n], [k, l])





(13)

where Kt,Ks denote the partial derivatives of the kernel,
with respect to time and space, respectively.

Finally, recall that several free parameters need to be
adjusted, namely, the width(s) of Gaussian kernel(s), and
the free parameters of the cost function (ε, δ, C). In our
case, an intra-image strategy is used, that consists on using
the pixels corresponding to Itest to determine the best free
parameters for the image at hand.
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Figure 1. Symbolic CDMMI (a), and approximation (5%
training pixels) with splines (b), RBF kernel (c) and D-
RBF kernel (d). Symbolic (normalized) ICPG image (e),
and estimation with splines (f) and D-RBF kernel (g).

4. Experiments and results

Image model. A simple model of diastolic transmitral
flow CDMMI was created as

vb(s, t) =
3

∑

r=1

ai exp

{

−
1

2
[sr, tr]Σ

−1
r [sr, tr]

T

}

(14)

where [sr, tr] is a bidimensional row vector, Σr is the
covariance matrix of each component, and sr, tr,Σr, are
given in Table 1. As shown in Fig. 1(a), two compo-
nents account for early LV filling (E-wave; i = 1, 2), and a
lower amplitude component emulates late filling (A-wave;
i = 3). Parameters were adjusted to match physiological
values of both waves, and time 0 was defined at the QRS
onset. By using symbolic calculations, Euler’s equation
was solved for the Gaussian mixture velocity field to pro-

r 1 2 3

tr
t+0.25
0.05

t+0.08
0.05

t+0.25
0.05

ar 90 45 48.75
sr

s−6
1.5

s−7
1.5

s−6
1.5

Σi

(

1 −0.5

−0.5 1

) (

1 −0.5

−0.5 1

) (

0.8 −0.5

−0.5 0.1

)

Table 1. Constant parameter values of color-Doppler

transmitral flow model (ar in cm/s, tr in s).
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Figure 2. CDMMI in a volunteer (a), (normalized) ICPG
image with splines (all samples) (b), and D-RBF SVM
with 5% of training samples (c).

vide with the theoretical values of ICPG images.

Results with image model. Digital images were simu-
lated from the blood flow velocity model, using finite res-
olutions of 200 Hz and 20 pixels/cm. This gave the gold-
standard for both CDMMI and ICPG image (121×161 pix-
els). A spline-based algorithm was used to build first the
CDMMI, and then to calculate the ICPG by cubic spline-
based operators. Also, SVM algorithm was used with both
RBF and D-RBF kernels. The same training subset of sam-
ples (random image subsampling) was used to build the
CDMMI in all the methods, and mean square error (MSE)
of approximations was calculated in the test pixels.

In Fig. 1, symbolic images and approximations are
shown. Table 2 shows the MSE in CDMMI as a function
of the training pixels. It can be observed that for increasing
ratio of training pixels, the overall velocity reconstruction
improves at a higher rate in SVM, specially for D-RBF
kernel.

Example of CDMMI. The CDMMI from a healthy vol-
unteer is shown in Fig. 2(a). Scanner resolutions for acqui-
sition were 600 Hz, 26.2 pixels/cm, and 5 bits (equivalent
to 1.25 cm/s of blood velocity resolution). The 126 × 171
image was subsampled by 2, and 5% of training pixels
were used. MSE for CDMMI was 86.25 using splines and
34.55 using D-RBF SVM. Figure 2(b,c) show the corre-
sponding ICPG image estimations. These results are quali-
tatively coherent with the trends shown by synthetic image
experiments. For a fair comparison, D-RBF SVM has to
be trained with the full image, rather than with a subset of
pixels, given that currently used spline techniques use the
full image. For this purpose, large-scale SVM algorithms
need to be used and adapted to CDMMI approximation.

♯ tr.pixels 1.2% 2.5% 5% 10%

Spline 147.2 96.3 46.2 20.6
RBF 14.9 3.06 0.87 0.064
D-RBF 0.46 0.012 5.7e-3 5.3e-4

Table 2. MSE in CDMMI approximation.

5. Conclusions

A new method for single-step estimation of ICPG im-
ages from CDMMI has been presented. The method uses
nonlinear SVM with D-RBF kernel, which is appropriate
for M-mode Doppler images. Comparisons with spline-
based processing with reduced number of training pixels
(10%) show the performance of SVM under these condi-
tions. The immediate future work is devoted to the devel-
opment of schemes working with available large-scale and
fast SVM algorithms [5], for a fair comparison with cur-
rently used spline techniques. Also, the inclusion of phys-
iological constrains and the application to other ultrasound
image modalities will be explored.
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