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Abstract

Possible clinical states of a cardiac arrest patient

are ventricular fibrillation/tachycardia (VF/VT), asystole

(ASY) or pulseless electrical activity (PEA), and the treat-

ment goals are return of spontaneous circulation (ROSC)

and neurologically intact survival. Waveform analysis has

been used in VF to predict treatment outcomes and we

hypothesised that similar analysis in PEA could predict

transformation to ROSC. We analysed 120 and 83 PEA

segments prior to transitions to ROSC and ASY, respec-

tively, to investigate the ability of ten electrocardiograph

(ECG) features to predict transitions to ROSC or ASY us-

ing neural networks. The feature combination that yielded

the best discrimination had a mean±SD area under the re-

ceiver operating characteristics curve of 0.88±0.02. The

results suggest that the ECG contains information regard-

ing the dynamics of PEA which can be used to study effects

of therapies in cardiac arrest patients.

1. Introduction

The cardiac arrest state is unstable, and will alternate ei-

ther spontaneously or due to intervention between ventric-

ular fibrillation/tachycardia (VF/VT), asystole (ASY) and

pulseless electrical activity (PEA). The goals of cardiac

resuscitation are to generate return of spontaneous circu-

lation (ROSC) in the short term, and neurologically intact

survival in the long term.

PEA is frequent during therapy of cardiac arrest and

has numerous electrical manifestations of which the two

most important are Pseudo PEA and True PEA. True PEA

is defined as the total absence of myocardial contraction.

Pseudo PEA is characterised by weak myocardial contrac-

tions producing minimal aortic pressure and often has nar-

row QRS complexes and shorter RR intervals and a higher

rate than true PEA. Pseudo PEA has also proven to be more

amenable to therapy[1].

PEA is a common state during cardiac arrest either as

the initial rhythm or occurring during resuscitation efforts.

A large fraction of successfully resuscitated patients go

through a stage with PEA at some point during the resus-

citation process, and aggressive resuscitation attempts are

required.

Waveform analysis reflecting the dynamics within PEA,

e.g. characteristics which discriminate between true- and

pseudo PEA, could add information on the patient re-

sponse to therapy and be used to generate prognostic in-

formation similar to that gained from VF waveform anal-

ysis. Clinically, estimating changes in the probability of

transition from PEA to ROSC could lead to prolonged and

more aggressive/invasive efforts in cases with detected re-

sponsiveness to therapy and earlier termination of futile

resuscitation.

Our hypothesis is that PEA changes dynamically due to

time and interventions, so that in some cases it is more

probable that a spontaneous change of state will result in

ROSC than in ASY. We investigate if these changes can be

characterised by features calculated from the PEA wave-

form.

2. Methods

We extracted ECG waveform segments to repre-

sent PEA with spontaneous transformations to alernative

rhythms from 689 patients and categorised them accord-

ing to resulting rhythm. The cardiac arrested patients

were treated with a Heartstart 4000SP monitor/defibrillator

(Laerdal Medical, Stavanger, Norway) from 2002 to 2005.

These defibrillators were modified for expanded signal

measurements. The patient data originated from ambu-

lance services in Akershus (Norway), Stockholm (Swe-
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den) and London (UK). In addition the data included pa-

tients treated in the acute care unit of the emergency de-

partment at the University Hospital in Vienna (Austria) and

further patients with in-hospital cardiac arrest at the Uni-

versity of Chicago (USA). The medical experts at each site

annotated the rhythm changes in the ECG. From this mate-

rial we extracted all PEA segments not influenced by either

chest compressions, defibrillation or degrading noise. The

PEA segments of interest consisted of PEA rhythm prior to

transitions to ASY or ROSC. The data is divided into two

classes, labelled ωASY and ωROSC as listed in table1.

Class # PEA Blocks Description

ωASY 134 PEA transition to ASY

ωROSC 249 PEA transition to ROSC

Table 1. Distribution of PEA blocks

This gave us 249 and 134 PEA segments prior to tran-

sitions to ROSC and ASY respectively. Some examples of

waveforms from these two classes are shown in figure 1.

ROSC ASY

Figure 1. 20 randomly selected PEA segments prior to

transition to ROSC (left) and ASY (right) with a duration

of 6 sec.

In order to prevent suppression of PEA characteris-

tics, the features were extracted from a rectangular slid-

ing window of width 4s (2000 samples). P features are

extracted from each window, k, to form feature vector

v(k) = [v1(k) v2(k) · · · vP (k)]T where k ∈ [1, 2 . . . , K].
The windows overlap with 0.4 sec. It is ensured that the

end of a segment is always represented. v is then calcu-

lated as the element-by-element median of all v(k). The

median is used to suppress the influence of outliers in

v(k). When extracting features for training purposes, PEA

blocks are truncated to a signal length of 10s (5000 sam-

ples). The data 10s prior to onset of rhythm transition is

kept, and the remaining is dumped.

Earlier analysis has presented promising results in dis-

criminating between PEA and perfusing rhythm[2]. The

following parameters were adapted from prior work and

used in this study: average RR interval, number of detected

QRS complexes, average QRS width, average QRS height,

average ECG power, average ECG amplitude, average

ECG amplitude exceeding 80% of maximum amplitude

(MA80), angle, slope (average sample difference), signal

length (SL) of the minimum phase correspondent (MPC),

max MPC, form factor and the coefficient of a 6th order

polynomial fitting with additional fitting error[2, 3, 4, 5].

Neural networks were trained to discriminate between

segments preceding ROSC and ASY in a 25 fold cross val-

idation strategy. Receiver operating characteristics (ROC)

curves were calculated and the the best performance was

found according to the largest area under the curve (AUC)

of the ROC graph.

In order to reduce the dimension of the feature vector, v,

and obtain a subset with suboptimal feature combinations

a greedy search approach was applied. The greedy search

evaluates a criterion function, J . Various functions may

be used, but in our case the mean AUC of the classifier is

used as criteria for the greedy search. The feature with the

largest J among all P features in v is initially selected. In

an iterative manner one by one feature is added to the sub-

set according to the feature that yields the largest increase

in J . The greedy search stops when no local improvement

is possible.

In general the labelled samples D are randomly divided

into two equally sized parts. One training set and one test-

ing set. But, when dealing with limited data sets, training

can be troublesome if not impossible due to the classifier’s

lack of generality. By applying cross validation techniques

the generality of the classifier can be improved consider-

ably. M-fold cross validation is a widely used method[6].

The training set was randomly divided into m disjoint sets

of equal size n/m, where n is the total number of patterns

in D. The classifier was trained m-times, each time with a

different validation set. The estimated performance is the

mean AUC of m-validations.

The performance of the classifier was evaluated in terms

of sensitivity (probability of true positive prediction of

ωROSC ) and specificity (probability of true positive pre-

diction of ωASY ).and After varying sensitivity over speci-

ficity, the area under the ROC curve was calculated for

each test set. The estimate of the classifier’s performance

was then calculated as the mean of the AUC over all test

sets, and gives a general measure of the classifier’s per-

formance for different parameter settings. The standard

deviation was also calculated to get an impression of the

generality of the classifier.

The generality of the classifier is governed by the neu-

ral network architecture. A great number of hidden neu-
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rons and excessive use of training epochs result in close

to 100% sensitivity and specificity. A large deviation of

sensitivity in testing would indicate over-training. Neu-

ral networks were trained with all combinations of hid-

den neurons, nH = [2, 4, . . . , 20] and epochs, kepochs =
[10, 20, . . . , 200].

Finally, for a given subset of features the optimal classi-

fier was determined as the one yielding the smallest num-

ber of neurons and epochs that did not jeopardise the over-

all performance of the classifier.

3. Results

The window length that gave the best over-all perfor-

mance was 4s (2000 samples), and was therefore used in

evaluating the performance of various neural network ar-

chitectures. In order to sustain generality in the perfor-

mance of the neural network, the lowest number of epochs

and nodes that did not jeopardise the over-all performance

was chosen. The parameters were thus set to 50 training

epochs and 10 hidden nodes. The performance of each

feature in discriminating between ωROSC and ωASY is

presented in table 2 in terms of mean AUC (standard de-

viation). When these features were combined in a greedy

search, the performance of the classifier was improved as

shown in figure 2.

Figure 2. AUC as a function of feature dimension.

The feature combination that produced the best over-

all performing classifier is presented in table 3, yielding

a mean AUC±SD of 0.88±0.02.

4. Discussion and conclusions

The present results suggest that changes in PEA can be

characterized quantitatively from the ECG waveform. As

presented in table 3 it is shown that the selected features

enable discrimination between PEA segments in change

vECG Description AUC

v1 RR interval 0.58 (0.029)

v2 Number of QRS complexes 0.53 (0.03)

v3 Average width of QRS 0.72 (0.01)

v4 Average height of QRS 0.74 (0.01)

v5 Average ECG power 0.74 (0.05)

v6 Average ECG amplitude 0.65 (0.02)

v7 MA80 0.72 (0.00)

v8 Angle 0.71 (0.01)

v9 Slope 0.85 (0.01)

v10 SL of MPC 0.58 (0.02)

v11 Max absolute MPC 0.62 (0.01)

v12 Form Factor 0.74 (0.01)

v13 PolyCoeff1 0.47 (0.02)

v14 PolyCoeff2 0.68 (0.02)

v15 PolyCoeff3 0.71 (0.02)

v16 PolyCoeff4 0.71 (0.02)

v17 PolyCoeff5 0.73 (0.01)

v18 PolyCoeff6 0.69 (0.02)

v19 Average PolyFit Error 0.44 (0.06)

Table 2. The mean AUC (standard deviation) of each fea-

ture.

Feature set Included features AUC±SD

vECG v9, v4, v12 0.88±0.02

Table 3. The mean AUC of the classifier derived from the

best feature combination

of state to ROSC and ASY respectively. The best perform-

ing classifier is based on feature vector, v = [v9 v4 v12].
Feature v9 was by far the best single performing feature,

and yielded a larger value for PEA in transition to ROSC.

Slope represents the steepness of the ECG changes, and

thus can be a measure of more synchronistic depolarization

of myocardial cells. The value of v4 was generally larger

in transition to ROSC than of ASY. The height of the QRS

is usually thought to represent the muscle mass depolariz-

ing synchronously in the lead vector. The classifier was not

considerably improved by introducing additional features.

Figure 2 shows several possible well performing feature

combinations with various dimensions. It is promising that

features independent of QRS detection such as v9, v10, and

v12 perform so well, since erroneous QRS detections arise

due to the variable QRS complexes of the PEA waveforms.

One weakness of the study is that only PEA segments

with transitions to ROSC and ASY were isolated. A sim-

ilar study should be performed with the additional transi-

tions to VF and VT present in the dataset. In a preliminary

experiment, a classifier discriminating between ωROSC

and ωnonROSC yielded a mean AUC±SD of 0.75±0.02.

This indicates that the analysis also captures the dynamics

of PEA with transitions to VF and VT, but that these cases
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are somewhere in between the extreme cases of transitions

to ROSC and ASY.

The greedy search algorithm is suboptimal and excludes

a vast number of possible feature combinations, and there

may exist unexplored feature combinations that outper-

form our selection.

By introducing sophisticated filtering techniques, the

discriminating power of the features might be enhanced.

The investigation of specific frequency bands, as done in

former VF analysis, should also be addressed in future

studies[7]. A light-weight QRS-detection algorithm was

used, and it might have suppressed predictive power with

respect to QRS characteristics, due to erroneous QRS de-

tection. By applying an improved QRS-detection algo-

rithm, performance might be added to the results of the

present study. It is also important to note that cross valida-

tion techniques were used to enable training and testing on

the same dataset. The classifier should have been tested on

yet another dataset, not influenced by the design process.

Some earlier studies have reported findings on the sig-

nificance of changes in PEA waveform characteristics.

One study classified PEA waveform morphology into sev-

eral groups, ranging from PEA waveforms with normal

QRS width and isoelectric ST and P waves, to PEA wave-

forms beyond QRS, P and T wave recognition. Patients

who were successfully resuscitated had ECG tracings clas-

sified as belonging to the groups with the most recog-

nisable QRS, P and T waveforms. We speculate that

these classifications represent progressive stages, which

accounted for their predicted value with respect to out-

comes or response to therapy [1]. Post defibrillation

PEA collected from porcine experiments of cardiac arrest

showed shorter QRS-interval and higher PEA-rate in the

animals that eventually had ROSC[8].

The results show that the ECG contains information re-

garding the dynamics of PEA which can be used to study

the effects of therapies in cardiac arrest patients.
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