
Changes in Cardiac Indices from Implanted Defibrillator-Stored

Electrograms Due to Acquisition and Preprocessing Conditions
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Abstract

A wide number of cardiac indices have been proposed

to describe electrocardiograms (ECG) during Ventricu-

lar Fibrillation (VF), and they can be useful when analy-

zing electrograms (EGM) stored in Implantable Cardio-

verter Defibrillator (ICD) during spontaneous VF. Howe-

ver, the dependence of their measurement on acquisition

and preprocessing conditions has not been so far statisti-

cally quantified. We propose a systematic procedure based

on nonparametric bootstrap resampling methods to obtain

standard errors and confidence intervals for a test. This

test detects changes in the statistical distribution of car-

diac indices from ICD-stored EGM during VF, due to dis-

crepancies in acquisition and preprocessing conditions. As

an application example, significant changes in the distribu-

tions of selected spectral indices due to lead configuration

were found by comparing measurements obtained from si-

multaneously recorded unipolar and bipolar EGM during

VF. Our nonparametric bootstrap approach can be readily

applied to the measurement of cardiac indices, allowing us

to study their changes under a diversity of conditions in a

systematic way.

1. Introduction

Mechanisms of Ventricular Fibrillation (VF) have been

investigated by analyzing electrocardiogram (ECG) sig-

nals. Various cardiac indices have been previously propo-

sed for ECG [1,2,3], and it is expected that they will be ex-

tended to electrograms (EGM) stored at Implantable Car-

dioverter Defibrillators (ICD). There are several reasons

why ICD- stored EGM constitute a valuable source of in-

formation: firstly, a high number of EGM recorded during

spontaneous VF are available; secondly, the follow-up and

intra-patient reproducibility can be analyzed for long time

periods; and finally, ICD lead configuration can provide us

with further insight on the underlying mechanisms of VF.

Nevertheless, EGM are usually recorded under a wide

variety of acquisition and preprocessing conditions, such

as electrode configuration or device manufacturer. There-

fore, it should be first addressed whether measurements of

cardiac indices obtained from EGM under different condi-

tions agree, i.e., whether these measurements are signifi-

cantly affected by changes in recording conditions. It is,

thus, desirable to design a general procedure that allows us

to investigate the effect that acquisition and preprocessing

conditions might have on measurements of cardiac indices

from ICD- stored EGM, by means of which the applicabi-

lity of each cardiac index can be studied.

In this paper, we propose a general procedure based

on nonparametric bootstrap resampling methods to inves-

tigate the effect of both acquisition and preprocessing con-

ditions on the measurement of cardiac indices. Bootstrap

methods constitute a family of computer-intensive statisti-

cal techniques that provide us with accurate estimates in

situations in which standard methods cannot be applied

[4]. The nonparametric approach will allow us to design

a systematic procedure common to every cardiac index. In

this procedure, expected values and standard errors for the

measurement of every index will be estimated and chan-

ges in their probability density function (pdf ) due to dis-

crepancies in acquisition and preprocessing conditions will

be detected in a test. As an application example, the effect

of lead configuration on the measurements of several spec-

tral cardiac indices will be studied by contrasting the pdf

of measurements from unipolar EGM against the pdf of

measurements from bipolar EGM during VF.

The paper is organized as follows. In Section 2, selected

cardiac indices will be proposed, and the procedure ba-

sed on nonparametric bootstrap resampling methods will

be presented. In Section 3, ICD-stored EGM data base

will be described and the effect of lead configuration on

measurements of cardiac indices will be studied. Finally,

in Section 4 benefits from such an approach will be discus-

sed.

ISSN 0276−6547 929 Computers in Cardiology 2006;33:929−932.



2. Methods

2.1. Selected spectral cardiac indices

In this paper, we focus on some relevant cardiac indices,

based on the Power Spectrum Density (psd) normalized by

the total power, Pn(f). They are the following [1, 2, 3]:

• Fundamental frequency and harmonics (f0,f2,f3): as-

suming that a VF episode, z, is a near-periodic process,

E (z(t)) = E (z(t − t0)), where E denotes statistical

averaging and t0 is the fundamental signal period, f0 is

the inverse of t0. Here we considered two harmonics:

f2 = 2 × f0, f3 = 3 × f0

• Dominant frequency (fdom): frequency where the maxi-

mum of Pn(f) occurs.

• Normalized psd at harmonics (Pn(f0),Pn(f2),Pn(f3)).
• Bandwidth at f0 and fdom (bw(f0),bw(fdom)): the li-

mits of the bandwidth are defined by a drop to 0.75 of the

central frequency.

• Organization index (oi): ratio of the power under the

harmonic to the total power. Frequency width at harmonics

is defined by a drop to 0.10 of Pn(fharmonic).
• Median frequency (fm): gravity center of the psd.

• Leakage (leak): cross-correlation between the ECG

segment and a sinusoidal waveform whose frequency is f0.

It is worth noting that most of these cardiac indices as-

sume within their definition a specific shape for the spec-

trum, namely a psd containing harmonically spaced peaks

whose amplitude is scaled by a broad envelope. This shape

reflects both the rhythmic activity of the heart and the par-

ticular arrhythmic mechanism.

2.2. Model of cardiac index measurement

Let Np be the number of EGM stored in a data base and

{Vi[n];n = 0, . . . , Qi−1; i = 1, . . . , Np} be the ith EGM,

consisting of Qi samples of voltage sensed by an ICD lead

system, as a result of the movement of electrical charges

along the myocardial walls {Zi(t)}. For each EGM we

are usually interested in measuring a given cardiac index

s, obtaining measurement si for EGM Vi[n].
Denoting EGM acquisition conditions (such as lead con-

figuration) by CA, the following relation can be stated bet-

ween Vi[n] and the underlying process Zi(t):

Vi = A(Zi(t), CA) (1)

where A is the unknown operator that maps Zi(t) into

Vi[n] under acquisition conditions CA. Furthermore, if we

denote signal processing conditions (such as parameters in

computing algorithms) by CP , si can be computed from

Vi[n] through the operator P as follows:

si = P (Vi[n], CP ) (2)

As a consequence of the dependence of the measurement

of cardiac index s on the whole set of conditions C =
{CA, CP }, S =

{

s1, . . . , sNp

}

can be seen as a random

sample from an unknown distribution fs(s|C).

2.3. Statistical procedure

Bootstrap methods [4] were introduced to calculate con-

fidence intervals for parameter estimation in scenarios in

which standard methods cannot be applied. Since then,

they have been extended to many signal processing appli-

cations [5]. Our purpose here is to design a general pro-

cedure based on nonparametric bootstrap resampling met-

hods to investigate the effect of changing conditions set C

on the measurement of a given cardiac index.

This procedure is described as follows. Let Cr denote

a set of specified reference conditions and Ca denote a set

of alternative conditions, differing from Cr in the current

value of at least one condition. For cardiac index s, we will

be interested, on the one hand, in estimating distributions

fϑ(ϑ|Cr) and fϑ(ϑ|Ca) of some statistic ϑ(s); and, on the

other, in contrasting fs(s|C
r) against fs(s|C

a), to asses

the effect of changing conditions from Cr to Ca on the

measurement of s.

Defining sample Sr (Sa) as the collection of measure-

ments of s obtained from EGM recorded under Cr (Ca)

conditions, we first draw out B resamples (B = 1000) Sr∗

(Sa∗) following bootstrap rules. Then, from each resample

we calculate estimation ϑ̂∗, and we build up its histogram,

which estimates fϑ(ϑ|Cr) (fϑ(ϑ|Ca)). Fig. 1 shows the

histograms for the mean and standard deviation (SD) of

fdom from two samples whose acquisition conditions dif-

fered in the lead configuration.

Furthermore, measurements of s from EGM obtained

under Cr will be said to be statistically indistinguishable in

strict sense from measurements from EGM obtained under

Ca if:

fs(s|C
r) = fs(s|C

a) (3)

We propose a simplified test to compare both distributions

by contrasting their means and SD. In this test, null and

alternative hypothesis are stated as follows:

• H0: changing conditions from Cr to Ca does not affect

significantly either the mean or the SD of s;

• HA: changing conditions from Cr to Ca does affect sig-

nificantly either the mean or the SD of s.

Therefore, if we denote the mean (SD) for conditions Cr

and Ca respectively by µ(sr) (σ(sr)) and µ(sa) (σ(sa)),
and define two new random variables as their differences:

∆µ(sr, sa) = µ(sr) − µ(sa) (4)

∆σ(sr, sa) = σ(sr) − σ(sa) (5)
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Figure 1. Distribution of µ̂∗(fr
dom), µ̂∗(fa

dom), σ̂∗(fr
dom)

and σ̂∗(fa
dom), from which expected values and standard

errors under Cr and Ca are estimated.

the test can be formulated as:

{

H0 : ∆µ(sr, sa) = 0 and ∆σ(sr, sa) = 0

HA : either ∆µ(sr, sa) 6= 0 or ∆σ(sr, sa) 6= 0

(6)

Since obtaining confidence intervals and hypothesis tes-

ting are dual problems, we first obtain the histograms for

∆µ̂∗(sr, sa) and ∆σ̂∗(sr, sa) by means of bootstrap met-

hods. These histograms are shown for fdom in Fig. 2,

when studying the effect of lead configuration. Next, based

on a percentile approach, we extract confidence intervals at

level α. Finally, if ∆µ̂∗(sr, sa) = 0 and ∆σ̂∗(sr, sa) = 0
are within their confidence intervals, H0 is not rejected; ot-

herwise, H0 is rejected and s is said not to be robust against

changes from Cr to Ca.

3. Results

3.1. Data base description

A total of 4878 ICD- stored episodes were collected

from 426 patients from Hospital Universitario Virgen de la

Arrixaca (Murcia, Spain) and Hospital Universitario Gre-

gorio Marañón (Madrid, Spain). Episodes were labeled

according to the type of arrhythmia observed based on an

expert’s criteria, and 1079 episodes of VF were identified.

In order to decrease the dependence on the intra-patient va-

riability, only one episode from each patient was selected,

reducing the number of episodes to 353.

3.2. Experiments

Acquisition conditions were identified for each EGM. In

this experiment, we studied the effect of lead configuration

on selected cardiac indices. Unipolar leads were proposed
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Figure 2. Distribution of ∆µ̂∗(fr
dom, fa

dom) and

∆σ̂∗(fr
dom, fa

dom), from which confidence intervals are es-

timated to contrast in the test measurements of fdom under

Cr against Ca.

to belong to Cr, while bipolar leads were proposed to be-

long to Ca. Aiming to decrease the dependence on the

model of ICD, we focused solely in episodes recorded by

Guidantr devices and, in order to reduce biological va-

riability, episodes that were not recorded simultaneously

by both configurations were ruled out. Thus, two groups

consisting of Np = 71 EGM were formed: the first group

comprised EGM sensed by unipolar leads and the second

one comprised EGM sensed by bipolar leads.

Selected spectral cardiac indices were measured during

the first 3 seconds of VF from each EGM, obtaining a sam-

ple of measurements for each index under Cr and Ca con-

ditions. Histograms for µ̂∗(sr), µ̂∗(sa), σ̂∗(sr) and σ̂∗(sa)
were obtained for α = 0.05. This step is exemplified in

Fig. 1 for fdom. In this case, it is worth noting the large ef-

fect that lead configuration has on the distribution of both

statistics, since µ̂∗(fr
dom) are expected to be systematically

lower than µ̂∗(fa
dom). Similar conclusions can be extracted

for σ̂∗(fr
dom) and σ̂∗(fa

dom). Furthermore, the unimoda-

lity of histograms would suggest that each group of EGM

is homogeneous.

Histograms for ∆µ̂∗(sr, sa) and ∆σ̂∗(sr, sa) were then

estimated for α = 0.05, and the hypothesis stated in (6)

were tested. This histograms are exemplified in Fig. 2

for fdom. As expected, both statistics are distributed over

negative values and there is weak overlapping over zero,

which suggests discrepancies statistically significant at low

α levels. Table 1 summarizes the results of the experi-

ments, showing the estimated means and standard errors

for every spectral cardiac index, and the outcome of the

hypothesis test. Notably, H0 is rejected for every index,

which indicates that they are not robust against changes in

lead configuration. These discrepancies can be explained
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Figure 3. Panels (a) and (c) show respectively typical uni-

polar and bipolar recordings, and (b) and (d) show their

estimated psd, along with relevant spectral characteristics.

Dashed contours in (b) and (d) represent the envelope, ob-

tained by frequency transforming EGM segments indica-

ted by dashed lines in (a) and (c).

by looking at the shapes of the psd of unipolar and bipo-

lar recordings. As shown in Fig. 3, compared to unipo-

lar leads, the derivative effect of bipolar leads suppresses

power at low frequencies while enhancing it at high fre-

quencies, leading to a shift in the peak of the spectrum

and fm toward higher frequencies. For this reason, power

concentrates at low frequencies in unipolar recordings, and

fdom usually coincides with f0, while it concentrates at

high frequencies in bipolar recordings, where fdom moves

to higher order harmonics. Furthermore, power at succes-

sively higher harmonics decreases faster in unipolar EGM

compared to bipolar EGM, which agrees with the fact that

the envelope of the spectrum is narrower in the former than

the later case.

4. Discussion and conclusions

In this paper we propose a general procedure based on

bootstrap methods to asses the effect of both acquisition

and preprocessing conditions on measurements of cardiac

indices obtained from EGM. On the one hand, histograms

for relevant statistics of measurements are obtained; from

them, valuable information, such as expected values and

modality can be investigated. On the other hand, measure-

ments obtained under different conditions are contrasted

by applying a hypothesis test to look for statistical sig-

nificant discrepancies. This procedure is exemplified by

comparing two populations of EGM recorded, respecti-

vely, by unipolar and bipolar leads, showing that measu-

rements of all selected spectral cardiac indices are sensi-

tive to the choice of lead configuration. This work shows

Unipolar (r) Bipolar (a)

Np 71 71

fdom [Hz] 4.6±1.1 16.5∗±7.1∗

bw(fdom) [Hz] 1.0±0.1 1.3∗±1.0∗

Pn(fdom) [ - ]% 11.5±3.2 2.0∗±1.0∗

f0 [Hz] 4.5±0.8 4.6±0.7∗

bw(f0) [Hz] 1.5±1.3 9.8∗±25.1∗

Pn(f0) [ - ]% 10.8±4.0 0.2∗±0.3∗

Pn(f2) [ - ]% 2.0±2.0 1.0∗±0.8∗

Pn(f3) [ - ]% 0.5±0.4 1.5∗±0.9∗

oi10 × 10 [ - ] 1.5±0.2 0.6∗±0.4∗

fm [Hz] 6.2±2.3 30.9∗±6.6∗

leak [ - ] 0.9±0.1 0.8∗±0.1

Table 1. Effect of lead configuration (leads vs.bipolar

leads) on the measurement of selected spectral cardiac in-

dices. Statistical significant discrepancies at a level of

α = 0.05 are designated by (*).

that statistical approaches to the study of cardiac indices

are crucial for the investigation of its nature.
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