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Abstract

The 9th annual PhysioNet/Computers in Cardiology

challenge invited participants to measure T-wave alter-

nans (TWA) in a set of 100 two-minute electrocardiograms

that included subjects with a variety of risk factors for

sudden cardiac death (including ventricular tachyarrhyth-

mias, transient myocardial ischemia, and acute myocar-

dial infarctions), healthy controls, and synthetic ECGs

with calibrated amounts of artificial TWA. The partici-

pants’ TWA estimates were used to develop a ranking of

the 100 test cases in order of TWA content, and the Kendall

rank correlation coefficient between this reference rank-

ing and each individual participant’s ranking of the 100

cases was calculated as a score (between -1 and 1; ac-

tual scores were between 0.11 and 0.92). The challenge

yielded insights into the strengths and weaknesses of clas-

sic and novel TWA analyses, open-source implementations

of a variety of methods, and a set of freely available ECGs

with reference rankings of TWA content.

1. Introduction

One hundred years after it was first reported by Hering

[1], T-wave alternans is widely understood to be an im-

portant indicator of risk of sudden cardiac death. Yet for

most of that time TWA was believed to be rare, until 1981,

when at Computers in Cardiology, Adam, Akselrod, and

Cohen reported the existence of microvolt-level TWA, too

small in amplitude to be detected visually at standard dis-

play scales[2].

T-wave alternans is a pattern in the ECG characterized

by two (rarely more) distinct forms of T-waves appearing

in alternation, at or above a patient-specific heart rate gen-

erally in the range of 90 to 120 beats per minute. Although

the mechanisms have not been fully elucidated, a large

amount of empirical evidence collected during the past 25

years has demonstrated an association between the amount

of TWA, the heart rate at which it appears, and the risk of

sudden cardiac death (SCD). In particular, the absence of

significant TWA in a patient with congestive heart failure,

low ejection fraction, or a recent myocardial infarction is

strongly predictive of a low risk of SCD. A positive finding

in such a patient, though less specific, may indicate that an

implantable cardiac defibrillator would be appropriate, an

indication that can be confirmed using invasive testing. A

review by Armoundas, Tomaselli, and Esperer discusses

mechanisms that may account for the associations among

TWA and other risk factors for SCD, as well as clinical

applications of TWA[3].

Since TWA analysis is performed on the surface ECG,

it is an inexpensive and non-invasive test. In clinical appli-

cations, TWA analysis can be done as part of an exercise

stress test, but there is interest in the research community

in using conventional long-term (Holter) ECG recordings

to observe TWA in the context of activities of daily living.

A variety of algorithms for detecting and quantifying

TWA have been proposed, employing techniques from lin-

ear and nonlinear signal processing such as spectral anal-

ysis, complex demodulation, counting zero-crossings in a

series of correlation coefficients, periodogram and com-

plex demodulation analysis of T-wave principal compo-

nents, Capon filtering, Poincaré maps, periodicity trans-

forms, statistical tests, moving averages, maximum likeli-

hood estimators and generalized likelihood ratio tests, and

more. For a comprehensive and systematic discussion of

methods for TWA detection and analysis, see the review

by Martı́nez and Olmos[4].

It remains very difficult to validate or to compare any of

these algorithms, since no generally accepted objective cri-

teria exist for measuring TWA, and no generally available

set of validation data exists as a basis for comparison. This

Challenge aimed to improve understanding of the strengths

and limitations of classic and novel TWA analysis meth-

ods; to establish a collection of reference ECGs ranked by

severity of TWA, as determined by a preponderance of ev-

idence; and to encourage the development and dissemina-

tion of open-source TWA detectors and estimators in order

to support and stimulate further research on the properties

and implications of TWA.
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2. Methods

Interested researchers were invited to nominate ECG

recordings for use in the Challenge. On the basis of the

nominations, the Challenge data set of 100 two-minute

ECGs[5] was posted on PhysioNet[6]. Of these, 56 were

ECGs obtained from 26 subjects with known risk factors

for sudden cardiac death, including 24 from subjects in

the PTB Diagnostic ECG Database[7] who had myocar-

dial infarctions; 12 from subjects in the Long-Term ST

Database[8] who had coronary artery disease and tran-

sient myocardial ischemia; 10 from subjects in the St.-

Petersburg Institute of Cardiological Technics 12-lead Ar-

rhythmia Database[9], including subjects with myocardial

ischemia, ventricular tachycardia, and myocardial infarc-

tion; and 10 from subjects in the Sudden Cardiac Death

Holter Database[10] who experienced sustained ventricu-

lar arrhythmias and cardiac arrest within minutes to a few

hours after the segments selected for the Challenge data

set. In most cases, the Challenge data set contains two or

more ECGs per subject to permit followup studies of the

evolution of TWA in individuals over time.

The 44 remaining ECGs in the Challenge data include

12 ECGs of healthy subjects (6 from the PTB Database and

6 from the MIT-BIH Normal Sinus Rhythm Database[11]),

and a group of 32 synthetic ECGs[12]. Thirty of this fi-

nal group contained artificial TWA in calibrated amounts

(the last two contained small amounts of added noise rather

than TWA). The artificial TWA was created by modulating

the T-wave loop of the synthetic vectorcardiogram (VCG),

then projecting the VCG onto 12 scalar ECG leads using

one of 5 individual Dower transform (IDT) matrices de-

rived from 5 subjects in the PTB Database. In this way, the

artificial TWA is distributed across the scalar ECG leads.

Each IDT was used to produce 6 ECGs for one “subject”,

with varying TWA amplitudes chosen from 2, 4, 6, 8, 10,

13, 15, 17, 30, 45, and 60 microvolts. The TWA ampli-

tudes were defined as the maximum vector difference be-

tween the forms of the T-wave loop in the VCG.

For each record in the challenge data set, participants

were asked to detect TWA, or to estimate its peak mag-

nitude, using a fully-automated method. Two participants

detected but did not quantify TWA, reporting 1 as the es-

timate for each record in which TWA was detected, and 0

as the estimate for the remaining records. The remaining

participants submitted quantitative estimates of TWA peak

magnitude, in varying units.

Nearly thirty participants analyzed part or all of the chal-

lenge data set, and 23 participants submitted complete sets

of 100 estimates of TWA. Since the various analyses pro-

duce incommensurate measurements, they cannot be com-

pared numerically across participants. Within a set of mea-

surements from a single participant, however, they can be

used to arrange the ECGs in order, from least to most

amount of TWA as estimated by that participant, and this

is the basis of the scoring that was used in the Challenge:

1. For each entry, the ECGs are ranked by the mag-

nitudes of the associated TWA estimates. Thus the ECG

with the lowest TWA estimate in a given entry receives the

rank of 1 for that entry, the ECG with the second-lowest

TWA estimate gets a rank of 2, etc.

2. For each participant who is able to distinguish be-

tween the synthetic ECGs with high and low amounts of

TWA, one entry is selected for the next step. At the con-

clusion of the Challenge, 19 participants met this criterion.

3. Each ECG receives a median rank, which is the me-

dian of the ranks assigned it by the selected entries, and a

reference ranking is made by sorting the median ranks (i.e.,

the ECG with the lowest median rank gets a reference rank

of 1, etc.).

4. The score for each entry is the Kendall (τ ) rank cor-

relation coefficient between the entry ranking and the ref-

erence ranking, where 1 is perfect agreement and -1 is per-

fect disagreement[13].

Participants were allowed to revise their entries in or-

der to explore other methods or to improve their scores.

The number of entries was limited to reduce the likelihood

of obtaining a superior result by chance. Throughout the

challenge, preliminary scores, calculated on the basis of

preliminary reference rankings, were provided as feedback

to participants.

3. Results

The final scores of the top 5 participants were 0.911

(Jubair Sieed), 0.890 (Giovanni Bortolan), 0.881 (Alexan-

der Khaustov), 0.827 (Dingchang Zheng), and 0.779

(Philip Langley). The first- and third-place results were

obtained by participants in the open-source division of the

Challenge, who contributed the software they developed

for the challenge in source form for further study by the

research community. These sources, the Challenge data

set, the final reference ranking, and final scores for the

19 participants whose entries were used to derive the final

reference ranking, are all available at http://physionet.org/-

challenge/2008/.

The median score for a set of random measurements,

given the final reference ranking, was 0.358; a score

above 0.436, achieved by 21 participants, is significant

(p > 0.99).

Notably, although the top-scoring entries that included

T-wave measurements were able to rank the synthetic

ECGs for a single “subject” in the correct order by amount

of artificial TWA (see figure 1), the final reference ranking

contains a small number of incorrectly ordered synthetic

ECGs (see figure 2). Furthermore, the estimated TWA

amplitudes in synthetic ECGs differ systematically across

“subjects”.
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Figure 1. Estimated vs. known TWA amplitudes in the

synthetic subset of the Challenge data set, from a top-

scoring entry. Data for ECGs generated using the same

“subject” (see text) are connected. Ideally, connected sets

would lie along coincident straight lines. Any line seg-

ments with negative or zero slopes reflect estimates that

are inconsistent with known TWA amplitudes. Differences

in slope between connected sets reflect systematic inter-

subject differences in TWA estimation.
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Figure 2. Reference rank vs. known TWA amplitudes

in the synthetic subset. As in figure 1, data for ECGs of

the same “subject” are connected. Negative slopes reflect

estimation inconsistencies that are shared across a major-

ity of the 19 entries used to determine the reference ranks.

Since the ordinates are ranks rather than measurements,

non-linearity reflects the non-uniform distribution of TWA

amplitudes across the entire challenge data set.

These observations reflect both the difficulty of measur-

ing TWA and the limitations of the scoring method. Since

the scores indicate how well each participant’s assessments

match those of the group, if a group ranking of a given

ECG is incorrect, then a correct ranking of that ECG by an

individual diminishes that individual’s score. In the con-

text of this challenge, errors in the reference ranking of the

synthetic ECGs did not alter the order of the final scores, as

shown by an experiment in which scores were recalculated

using an altermate reference ranking that was adjusted to

correct these errors.

4. Discussion and conclusions

A possible objection to the scoring algorithm is that the

inclusion of a given entry in the determination of the me-

dian introduces a bias in favor of that entry. Given a suf-

ficiently large number of entries, such a bias will be in-

significant, but in any case, the scores were recalculated

using ten alternative reference rankings that excluded each

of the top ten entries, as well as rankings that excluded var-

ious combinations of these top-ranked entries. The scores

obtained varied slightly but the order of scores of the top

ten participants was unaffected by the choice of reference

ranking, except that the removal of either of the top two

entries reverses the order of the second and third entries.

Another concern is the effect of including the “detector”

entries among those used to determine the median rank-

ings, since they do not contain information needed to dis-

tinguish low from moderate from high amplitude TWA,

and their inclusion may tend to diminish the influence of

other entries that do contain such information. Again,

however, an experiment showed that exclusion of “detec-

tor” entries had only minimal effects on the reference rank-

ing and the final scores, most likely because only 2 of 19

participants submitted such entries.

Interestingly, the top score is only the second-best score

achieved by its owner, who received a score of 0.919 for

his initial entry. (The substitution did not affect the order

of scores.) In all other cases, the final scores are the highest

achieved by their owners.

For details of the algorithms used by the participants in

this challenge, see their papers in this volume of Comput-

ers in Cardiology. They employed a wide variety of time-

and frequency-domain approaches, including methods pre-

viously described in the literature as well as novel methods

developed specifically for this Challenge. It is clear that

many of these methods are in general agreement with re-

spect to a subset of ECGs in the Challenge data set that

were judged to have high amounts of TWA, but the TWA

in some of the high-TWA cases was missed or significantly

underestimated in some entries, suggesting that an algo-

rithm making use of multiple approaches is likely to yield

better sensitivity even for high-amplitude TWA than sim-
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pler approaches. The top-scoring algorithms were able to

rank the synthetic ECGs with low-amplitude TWA with

many fewer errors than in most entries, suggesting that the

best algorithms can detect TWA with an amplitude of as

little as 4 microvolts.

Acknowledgements

Thanks to Gari Clifford, who created a set of synthetic

ECGs (with and without TWA) that were the basis of the

synthetic ECGs used in the Challenge data set; to Juan

Pablo Martı́nez, Ary Goldberger, and Roger Mark, who

provided generous and valuable advice on the development

of the Challenge; and to the Board of Computers in Car-

diology for its continuing and enthusiastic support for the

Challenge. Special thanks to Richard Jenkins of Electro-

gram, Inc., and to Computers in Cardiology for funding the

Challenge awards. PhysioNet is funded by the National In-

stitute of Biomedical Imaging and Bioengineering and by

the National Institute of General Medical Sciences, under

NIH cooperative agreement U01-EB-008577.

References

[1] Hering HE. Das Wesen des Herzalternans. Muenchener

med Wochenschr 1908;4:1417–1421.

[2] Adam DR, Akselrod S, Cohen RJ. Estimation of ventric-

ular vulnerability to fibrillation through T-wave time series

analysis. In Computers in Cardiology 1981. Los Alamitos:

IEEE Computer Society Press, 1981; 307–310.

[3] Armoundas AA, Tomaselli GF, Esperer HD. Pathophysio-

logical basis and clinical application of T-wave alternans.

JACC 2002;40:207–217.

[4] Martı́nez JP, Olmos S. Methodological principles of T-wave

alternans: a unified framework. IEEE Trans Biomed Eng

2005;52(4):599–613.

[5] T-Wave Alternans Challenge Database. http://-

physionet.org/pn3/twadb/.

[6] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM,

Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng

CK, Stanley HE. PhysioBank, PhysioToolkit, and Phy-

sioNet: Components of a new research resource for

complex physiologic signals. Circulation 2000 (June

13);101(23):e215–e220. Circulation Electronic Pages:

http://circ.ahajournals.org/cgi/content/full/101/23/e215.

[7] PTB Diagnostic ECG Database. http://physionet.org/-

physiobank/database/ptbdb/.

[8] Long-Term ST Database. http://physionet.org/physiobank/-

database/ltstdb/.

[9] St.-Petersburg Institute of Cardiological Technics 12-lead

Arrhythmia Database. http://physionet.org/physiobank/-

database/incartdb/.

[10] Sudden Cardiac Death Holter Database. http://-

physionet.org/physiobank/database/sddb/.

[11] MIT-BIH Normal Sinus Rhythm Database. http://-

physionet.org/physiobank/database/nsrdb/.
[12] Clifford GD, Sameni R. An artificial multi-channel model

for generating abnormal electrocardiographic rhythms.

Computers in Cardiology 2008;35.

[13] Abdi H. The Kendall rank correlation coefficient. In

Salkind N (ed.), Encyclopedia of Measurement and Statis-

tics. Thousand Oaks (CA): Sage, 2007; 1–7.

Address for correspondence:

George B. Moody

MIT E25-505A, Cambridge, MA 02139 USA

george@mit.edu

508


