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Abstract 

We developed a method for automated quantification 

of myocardial perfusion from cardiac magnetic 

resonance (CMR) images. Our approach uses region-

based and edge-based level set techniques for 

endocardial and epicardial border detection combined 

with non-rigid registration achieved by a 2D multi-scale 

cross-correlation and contour adaptation. This method 

was tested on 66 short-axis image sequences (Philips 

1.5T) obtained in 11 patients at rest and during 

vasodilator stress at 3 levels of the left ventricle during 

first pass of a Gadolinium-DTPA bolus. Myocardial ROIs 

were automatically defined and contrast enhancement 

curves were constructed throughout the image sequence. 

Analysis of one sequence required <1 min and resulted in 

endo- and epicardial boundaries that were judged 

accurate. Curves obtained during stress showed the 

typical pattern of first-pass perfusion with SNR of 19±4, 

as well as increased contrast inflow rate (0.031±0.013 vs 

0.014±0.004 sec-1) and higher peak-to-peak amplitude 

(0.20±0.05 vs 0.14±0.03) compared to resting curves. 

Despite the extreme dynamic nature of contrast enhanced 

image sequences and respiratory motion, fast automated 

detection of myocardial segments and quantification of 

tissue contrast results in time curves with excellent noise 

levels, which reflect the expected effects of stress.  

1. Introduction 

Quantification of first-pass myocardial perfusion from 

contrast-enhanced cardiac magnetic resonance (CMR) 

images relies on the definition of myocardial regions of 

interest (ROI). This is usually achieved by manually 

drawing ROIs in one frame and then adjusting their 

position on subsequent frames to compensate for cardiac 

translation due to respiration [1]. This tedious, time-

consuming and potentially inaccurate methodology has 

been hindering widespread clinical application of 

imaging-based quantification of myocardial perfusion. 

However, the development of automated techniques has 

been difficult because of the extreme dynamic nature of 

contrast-enhanced image sequences and out-of-plane 

cardiac motion. Recently, analysis of image noise density 

distribution proved as a useful tool for automated 

dynamic endocardial border detection [2]. The goals of 

the present study were: (i) to use this approach to develop 

an automated technique for identification and registration 

of myocardial ROIs, and (ii) to test the feasibility of using 

this technique for perfusion quantification from images 

obtained in patients undergoing pharmacological stress 

CMR testing. 

2. Methods 

2.1. Population 

Eleven adult subjects (age 56±17 yrs, 7 males) were 

studied using CMR imaging. Exclusion criteria were: (i) 

standard contraindications to MRI with Gadolinium 

contrast, (ii) ischemic heart disease evidenced by 

perfusion abnormalities or delayed Gd enhancement.  

2.2. Imaging  

Short-axis images (Achieva, Philips 1.5T) were 

obtained at three levels of the left ventricle during first 

pass of a Gadolinium-DTPA bolus (0.075 to 0.10 

mmol/kg at 4 to 5 ml/ sec). Images were acquired using a 

hybrid gradient echo/ echo planar imaging sequence 

(nonselective 90° saturation pulse followed by a 80 ms 

delay, voxel size ~2.5x2.5mm, acquisition time=83 ms 

per slice, slice thickness 10mm, flip angle 20°, TR=5.9 

ms, TE=2.7 ms, EPI factor 5, and SENSE factor 2). 

Patients were instructed to hold their breath as long as 

possible starting just prior to the administration of 

contrast. Imaging was performed starting 2 minutes after 

injection of A2A specific vasodilator stress agent 

regadenoson (Lexiscan; Astellas Pharmaceutical) and 

then repeated 15 minutes after injection of aminophylline 

under resting conditions. 
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2.3. Image segmentation 

For each slice, the first step of analysis is manual 

placement of a single point inside the LV cavity. This is 

done in a single frame. The second step is the automated 

selection of the best frame for endo- and epicardial 

detection (figure 1). In this reference frame, first, the 

endocardial boundary is automatically detected (figures 

2A and 2B). Unlike most previously used techniques that 

are based on thresholding pixel intensity, our approach is 

based on the assumption that noise distribution in the 

blood pool is different from that in the myocardium.  

This assumption allows us to use a region-based level 

set technique to partition the heart into maximally 

homogeneous regions taking into account the local noise 

patterns. From a mathematical point of view, we first 

define a curve C as the zero level set of an implicit real 

function l taking values on the image domain っ:   

C = {(x, y)  っ: l(x, y) = 0} 

This curve C undergoes an evolution in time in order 

to maximize the following functional F: 
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I is the gray level intensity image, i(C) and o(C) are 

the regions inside and outside C, and length(C) is a 

regularization term [3]. p(I) represents the probability 

density distribution of the gray levels in MRI images, 

which can be approximated with a Gaussian distribution 

under fairly reasonable conditions: 
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where た and j are the average and variance of I, 

respectively. 

The final step of endocardial detection is boundary 

regularization achieved using curvature motion [4] that 

does not allow curvature above certain level and was 

designed to automatically include the papillary muscles in 

the LV cavity (figure 2B). We then use the classical edge-

based level-set model [5] to search the image from the 

endocardium outwards and identify the epicardial 

boundary (figure 2C). The equation that drives the 

evolution is the well-known Malladi-Sethian model for 

active contour evolution including a dependence of the 

speed on the curvature, a propagation expansion speed 

and an advection speed based on the image gradient 

 t  g K1  g  
 

with adequate boundary conditions and the previously 

computed endocardium contour as initial condition. At 

the end of this step, the epicardial boundary is also 

regularized with modified curvature motion. 

2.4. Image registration 

Non-rigid image registration was achieved by a multi-

scale extension of two-dimensional cross-correlation to 

compensate for cardiac translation and deformation as a 

result of out-of-plane motion. To this effect, we defined a 

first template image of the left ventricle in the reference 

frame, and five additional template images created by 

resizing this template to different degrees (1 pixel 

difference at a time). Then cross-correlation between each 

consecutive frame and each of the six templates was 

calculated and the new size and position of both endo- 

and epicardial boundaries were determined by finding the 

time

Figure 1. Automated selection of the frame for endo- and epicardial detection is achieved by tracking over time the pixel intensity in the

vicinity of the seed point inside the LV cavity and identifying the frame in which the intensity reaches 95% of its maximum (arrow).

This frame shows optimal left and right ventricular cavity opacification, as well as a certain level of myocardial enhancement, which

are all helpful for endo- and epicardial detection. Of note, this usually occurs early in the sequence, when the patient is still in apnea.   

AA BB CC

Figure 2. After optimal frame is automatically selected (A), LV

endocardial boundary is detected using a region-based level set

technique taking into account the local noise patterns (B). Then,

the epicardial boundary is detected using classical edge-based

level-set model that searches from the endocardial boundary

outwards (C). 
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largest cross-correlation peak among the six 

combinations. Subsequently, contour adaptation was 

performed as a final step of boundary refinement using 

again the edge-based level-set model (figure 3). 

Templates were updated for each consecutive frame to 

take into account the changes in pixel intensity occurring 

during the passage of the contrast bolus. 

2.5. Quantification of contrast dynamics 

To allow analysis of regional myocardial perfusion, the 

myocardial ROI, defined as the area between the endo-

and epicardial contours, was divided into 6 wedge-shaped 

segments, according to the standard segmentation model 

(figure 4, left). For anatomically correct orientation, the 

user manually identified the anterior junction of the right 

ventricular free wall with the inter-ventricular septum. 

Then pixel intensity was measured in each segment over 

time, resulting in contrast enhancement curves throughout 

the image sequence (figure 4, right). From each curve, the 

slope of the contrast enhancement phase, reflecting inflow 

rate, was calculated using the linear regression analysis of 

the upslope portion of the curve. In addition, the peak-to-

peak amplitude, reflecting the concentration of 

Gadolinium per unit volume, was calculated.  

2.6. Performance testing 

This approach was tested by: (i) visually judging 

frame-by-frame the accuracy of endo- and epicardial 

boundary positions, and (ii) calculating for each segment 

the ratio between the peak-to-peak amplitude of the 

contrast enhancement curve and the SD of the plateau 

phase (SNR). In addition, the slope of the contrast 

enhancement phase and the peak-to-peak amplitude in 

each segment were compared between rest and stress, to 

test the ability of our technique to quantify the expected 

effects of stress. 

3. Results 

Time required for automated analysis of a complete 

perfusion sequence in one slice was less than 1 minute on 

a personal computer and resulted in endo- and epicardial 

boundaries that were judged accurate in all image 

sequences (figure 3, right). Contrast enhancement curves 

clearly showed the typical pattern of first-pass perfusion 

(figure 4, right), in all images sequences obtained at both 

rest and stress. Mean SNR was 15±5 at rest and 19±4 
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Figure 3. Image registration uses a template obtained from the

reference frame (top). The endo- and epicardial contours are

shifted and deformed in each consecutive frame to match the

position and shape of the left ventricle. 
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Figure 4. After myocardial ROIs were defined (left), regional contrast enhancement was plotted over time for each ROI. This example

shows data obtained in a mid-ventricular slice during regadenoson stress.  
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during stress, reflecting excellent quality of the curves. 

As expected, during stress, the upslope phase of the 

curves was steeper in all myocardial segments in all 

patients (figure 5), indicating faster contrast inflow rate as 

part of the normal hyperemic response. This was reflected 

by the significantly higher slope, S, during stress: 

0.031±0.013 vs 0.014±0.004 sec-1.(p<0.05) In addition, 

the stress-induced increase in pixel intensity, or the peak-

to-peak amplitude of the curve, A, was also significantly 

higher during stress: 0.20±0.05 vs 0.14±0.03 (p<0.05), 

indicating increased intra-vascular blood volume (figure 

5). 

4. Discussion and conclusions 

This study was aimed at the development of an 

automated technique for the quantification of intra-

myocardial contrast on CMR images, as an alternative to 

subjective, tedious and time-consuming manual tracing 

and frame-by-frame repositioning of multiple ROIs, 

which often takes 30 to 60 minutes per study. Typical 

CMR images acquired using perfusion-targeted pulse 

sequences are characterized by relatively low spatial 

resolution, high noise levels, and in- and out-of-plane 

cardiac motion, as well as rapid and extreme changes in 

brightness and contrast of the different image 

components. As a result, automated detection of the endo- 

and epicardial boundaries using conventional threshold 

based approaches is not feasible.  

To the best of our knowledge, neither noise 

distribution nor non-rigid multi-scale registration have 

been previously used to segment contrast-enhanced CMR 

perfusion image sequences. Our results indicate that 

despite the extreme dynamic nature of contrast enhanced 

image sequences and respiratory motion, dynamic 

detection of myocardial segments and quantification of 

intra-myocardial contrast using this approach is feasible 

and is substantially faster than the current state of the art 

methodology. This approach results in regional contrast 

enhancement curves with excellent noise levels, which 

are necessary for reliable quantitative analysis of contrast 

dynamics. The comparisons of resting and stress data 

demonstrated the ability of this technique to reliably 

detect the expected effects of vasodilator stress.  

In summary, our technique allows for the first time 

fast, automated, user-friendly and potentially more 

accurate measurement of intramyocardial contrast 

enhancement from CMR images, and may thus address 

the strong clinical need for quantitative evaluation of 

myocardial perfusion. 
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Figure 5. Example of contrast enhancement phase of the time

curves obtained in the mid-inferior segment during rest (blue)

and stress (red). Note the increase in both the slope and the

peak-to-peak amplitude, reflecting the expected effects of stress.
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