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Abstract

Here we introduce a robust method for filling in short

missing segments in multiparameter ICU cardiovascular

data inspired by the “PhysioNet/Computing in Cardiology

Challenge 2010: Mind the Gap”. Using the signals’ his-

tory we identified the interconnections between the signals

in the form of composite IIR transfer functions. Assuming

that the connections do not vary in time, we managed to re-

construct the missing signals using the yet available paral-

lel measured signals and the transfer functions. Since this

assumption holds only for short timeperiod, we restricted

the identification of the transfer function to segments prior

the missing signal shorter than 30 seconds.

Our results are promising on the challenge dataset. We

concluded that this approach can be efficient in recon-

structing and even detecting missing or corrupted car-

diovascular signals or other type of datasets with several

modalities and strong interconnections between them.

1. Introduction

The physiological state of critically-ill Intensive Care

Unit (ICU) patients can change frequently, demanding

rapid analysis and quick decisions about interventions [1].

In this environment, where a continuous data flow of phys-

iologic signals is indispensable, fault tolerance monitor-

ing is of high importance. Missing or corrupted signals

can occur among others due to human or machine error,

sensor malfunction, moving artefacts and external noise.

In ICU, several biomedical signals of interest are moni-

tored parallel on the same patient with different modali-

ties through different transducers. Although there is a fair

amount of information that overlaps among these signals,

resulting in high level of interconnection between them,

the chance of artefacts affecting all the signals simultane-

ously is minor. There is thus a strong motivation to use

advanced signal processing and machine learning methods

that take advantage of the several different modalities to

detect and/or eliminate artefacts [2], this has also inspired

this year’s PhysioNet/CinC challenge [3].

Here we introduce a robust batch processing method

based on the short term static interconnections between

cardiovascular signals measured parallel, that has proven

useful in predicting 30 second segments of missing signals

(gaps) in ICU datasets. The usage of the approach is not

restricted to physiological data, but it is feasible in any ap-

plication including multiple signals with static linear con-

nections.

This paper is organized as follows: in Section 2 we in-

troduce our method of identification and reconstruction, in

Section 3 the results are described, and further discussed

in Section 4. Finally in Section 5, conclusions are drawn

and we point to future work directions.

2. Methods

In this work the Mind the Gap [3] dataset C was used,

available at http://physionet.org [4]. The dataset consists

of 100 ten-minute records containing 6, 7, or 8 signals ac-

quired from bedside ICU patient monitors. The recorded

signals vary across records, and they include ECG, contin-

uous invasive blood pressure, respiration, fingertip plethys-

mograms, and occasional other signals. In one of these

signals, the final 30-second segment (the target signal) is

missing. Our goal was to reconstruct this missing target

signal in each record, reaching possibly highest scores.

Two types of scoring functions were introduced as

Q1 = MAX

(

1 −
MSE

V AR
, 0

)

(1)

Q2 = MAX (CORR, 0) , (2)

being MSE the mean squared error, V AR the variance

of the target signal, and CORR the correlation coefficient

between the target signal and the reconstruction. This scor-

ing system is relevant because Q1 measures the overall ac-

curacy of the reconstruction, while Q2 represents the ac-

curacy in recovering the timing of the major fluctuations,

which can be important at feature extraction, for example

to derive RR interval tachogram from ECG recordings. As

it can be seen on Eqs (1) and (2), both Q1 and Q2 scores

range from zero to one.
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2.1. The model

Our approach to identification was a gray-box tech-

nique. The model structure was derived from the principle

that since the signals originate from the same physiolog-

ical system, there has to be a strong interconnection be-

tween them. The connections were identified in the form

of a Multi-Input/Single-Output (MISO) system. Third or-

der Infinite Impulse Response (IIR) filters were used on

the inputs, then the filtered signals were summarized in a

linear model (See Figure 1).

Figure 1. Model structure, where U1...Un are the input

signals and Y is the output.

2.2. The algorithm

The algorithm relies on the following assumptions:

1. There is a strong linear interconnection between the sig-

nals of the record.

2. Although there might be a time-variation in the con-

nection between physiological signals, in short segments

(<1 minute) this can be disregarded and the connection

considered as time-invariant.

3. If we manage to identify a good model on the data avail-

able preceding the gap (prior), we will be able to recon-

struct the target signal using the signals measured parallel

to the target (concurrent signals).

The parameters of the model (the actual filter coeffi-

cients) were estimated using the prior as learning set. For a

faster convergence, the mean was removed from the prior,

Figure 2. Block diagram of the identification method,

where U is the input prior, Y is the history of the target

signal, Y ′ is its estimate and E is an error for feedback to

the learning algorithm.

and later added to the reconstructed signal. A genetic algo-

rithm was used for parameter identification (see e.g. in [5])

with mean crossover strategy and mutation. The fitness

function, f = SD ∗ MSE was found to maximize both

Q1 and Q2 scores. The block diagram of the identification

is shown in Figure 2.

Assuming that the connection is time-invariant, we were

able to predict the target by using the identified model

on the concurrent signals. In agreement with the 2nd as-

sumption, the identification of the transfer function was re-

stricted to the time interval 10 to 20 seconds preceding the

target. The reconstructions fitted to different lengths were

evaluated on the 30 second prior on a survival of the fittest

basis. The algorithm was runned multiple times in order to

overcome local optima.

A sample MATLAB implementation of the algo-

rithm is freely available under the GNU Public Li-

cense version 3 (GPLv3) from the author’s homepage:

http://researcherscorner.com/users/ahartmann.

3. Results

In all cases, the identified filters generated stable output.

On most of the signals we found the presence of strong

linear interconnection. A typical reconstruction and curve

of parameter learning is presented in Figure 3.

Table 1 shows the detailed results grouped by the type

of the target signals. As it can be seen, we resulted in

an overall good reconstruction:
∑

Q1 = 69.6591 and
∑

Q2 = 81.3236 out of the possible 100. The Q2 scores
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Figure 3. Demonstration of the (normalized mean) prior, parameter learning and reconstruction on a signal where the

target was known. The datasource is a segment of the ’c21’ record.

were found significantly higher than the Q1 ones. The

ECG signals resulted the best prediction, in some cases

both Q1 and Q2 scores were over 0.995. The reconstruc-

tion of the further signals were usually considerably good,

however on certain records, mostly when CVP, plethys-

mography or respiratory signals were missing, the recon-

struction was moderate. We observed that the blood pres-

sure signals had mostly better scores if another pressure

signal was also available. It was also noticed, that the qual-

ity of the signals had an impact on the result.

The running time of the identification depends much on

the length of the prior, the size of the population and the

number of generations, which can be reduced by applying

a condition to stop on satisfactory fitness. For example,

the algorithm using 10 seconds of prior, a population of

100, and 2000 generations, the reconstruction of one sig-

nal takes about 12 minutes on an Intel(R) Xeon(R) E5310

1.60GHz CPU.

4. Discussion

The predictions show a good fit to the actual target, see

Table 1. In agreement with [6] we presume that the iden-

tified transfer functions could potentially reflect the indi-

vidual cardiovascular system. Note however, that it is not

straightforward to order biological significance to the filter

coefficients. Fortunately, for the purpose of reconstruction

this is not necessary: all the knowledge about the system

is abstracted in the parameters, allowing of the prediction

independent from the domain of the original signals.
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Table 1. Detailed scores and final result as mean±SD.

Target Q1 Q2 Attempted

ECG 0.9 ± 0.13 0.95 ± 0.07 39

ABP 0.8 ± 0.13 0.9 ± 0.07 15

CVP 0.26 ± 0.31 0.44 ± 0.35 10

ICP 0.74 ± 0.35 0.93 ± 0.06 5

ART 0.49 ± 0.43 0.73 ± 0.23 3

PLETH 0.46 ± 0.34 0.62 ± 0.34 14

RESP 0.6 ± 0.27 0.76 ± 0.24 14

All 0.7 ± 0.31 0.81 ± 0.26 100

The results also confirm our preliminary assumptions

(see section 2.2 for details). The fact that the ECG signals

resulted the best reconstructions may be a consequence of

every datafile containing at least two good quality ECG

channels. We found the reconstructions of pressure signals

to be closer to the target when another pressure signal was

also available. These findings imply that the connection

between the same modalities tend to be more significant

than between different ones. Hence, a great opportunity

to improve the reconstruction of respiratory signals could

be to add estimated respiratory derived from ECG signals

(see [7] and references).

On certain signals however we did not achieve a good

reconstruction. The reason of this can be that there was no

strong connection between the signals in the prior, or the

connection was highly non-linear, which could not be cap-

tured well by our model. The score of the reconstruction is

also highly influenced by the quality of the original signals.

For instance if the target signal is badly scaled and exceeds

the measurement range, the scores might be low even if the

algorithm was able to predict the details where the actual

target shows constant minimum or maximum values.

Theoretically, this approach is capable not only to fill in

the gaps of known positions, but also to detect the points

where the connections change drastically indicating cor-

rupted signal. To be useful in clinical practice however, an

on-line implementation would be necessary, even if detect-

ing artefacts can potentially be of interest in batch process-

ing of retrospective physiological data as well.

5. Conclusion and future work

The introduced identification algorithm is based on the

strong linear connection between the parallel measured

signals. In practice on short segments of cardiovascular

records the connections proved to be time-invariant. By

identifying these in batch processing, it was possible to re-

construct the missing target signal. The algorithm is not

restricted to physiological signals, indeed it could poten-

tially be used in many real-world applications.

Our future direction points towards reducing the running
time of the identification and potentially also provide an

algorithm feasible for on-line processing. We are also con-

sidering to include non-linear filters in the model, which

may result a better identification and prediction of the un-

derlaying signals.
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