
Filling in the Gap: a General Method Using Neural Networks

Rui Rodrigues1

1Dep. Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

Abstract

When a set of medical signals has redundant informa-

tion, it is sometimes possible to recover one signal, from

its past and the information provided by the other signals.

In this work, we present a general method to realize that

task.

It has been known for a long time that multilayered

networks are universal approximators, but, even with the

backprop algorithm, it was not possible to train such a net-

work, to realize complex real life tasks. In the last years,

Geoffrey Hinton presented a training strategy that allows

to overcome the previous difficulties. We describe a way of

adapting Hinton’s strategy to our task.

An example of a situation considered here, consists on

training a Multilayered perceptron to take ECG leads II

and I as input and produce as output missing lead V.

This method got the best scores among participants in

the Physionet/ Computing in Cardiology Challenge 2010.

1. Introduction

When continuous observations are required for clini-

cians and researchers, it is important to be able to recon-

struct, in medical records, signals that were temporary cor-

rupted or lost. The aim of the PhysioNet/Computing in

Cardiology Challenge 2010 was to develop robust methods

for filling in gaps in multiparameter physiologic data [1].

The participants where given ten-minute records contain-

ing 6 to 8 signals, acquired from Intensive Care Unit(ICU)

patient monitors, and the final 30-second segment from

one signal was set to zero. The challenge was to recon-

struct this missing signal segment (gap) on each record.

The method we present consists on creating a multilayer

perceptron neural network (MLP) that outputs the signal to

be reconstructed, the target signal. This MLP receives as

input a part of the other signals present in the record; for

example, if the target signal is respiration (RESP), under

certain conditions we use ECG II and central venous pres-

sure(CVP) as input signals. The neural network we build

has four hidden layers. Known difficulties to train such

a network, that in some cases has about 800 000 weights,

are overcome by a procedure that is adapted from Geoffrey

Hinton’s ideas [2–4].

2. Methods

2.1. Data

The Data is the PhysioNet/Computing in Cardiology

Challenge 2010 set C 1[1, 5]. It consists on 100 10-minute

records from an intensive care unit, each one composed

by 6 to 8 signals (ECG, continuous blood pressure, finger-

tip plethysmograms(PLETH) and others). After 9 minutes

and 30 seconds one of the signals dropped to zero: this is

the signal to be reconstructed.

2.2. Choosing the input signals

For each record it is chosen a subset of the available sig-

nals to reconstruct the target signal; it contains from 1 to

3 signals. We’ll refer to these subset as the input signals.

For example, when reconstructing RESP, used input sig-

nals were: PLETH and ECG II in record C00 , ECG II and

CVP in record C03, ICP and PLETH in record C12 and

only ICP in record C63.

2.3. Creating patches

The MLP we build receives as input, and outputs, small

patches from the signals.

The patches duration is:

• 3 seconds for input and target signal when the target sig-

nal is RESP

• 1 second for target signal and all input signals but RESP,

when target signal is not RESP; when RESP is used as an

input signal, we take RESP patches with the duration of 2

seconds, starting 1 second before the target signal patch.

We produce the training patches from the first 9 min-

utes and 30 seconds of the input signals and target. Two

consecutive patches start with a delay of 5 samples (0.04

seconds). Like this we get about 14 000 training patches

for each signal.

1viewable with a browser in http://www.physionet.org/cgi-bin/ATM

ISSN 0276−6574 453 Computing in Cardiology 2010;37:453−456.



2.4. Preprocessing

All signals are normalized to zero average and unit stan-

dard deviation, before patches are extracted; to reduce

computational burden, all but ECGs and ICP patches are

subsampled.

2.5. MLP structure

Accordingly to [6], an MLP with several hidden layers

is expected to produce better results than a single hidden

layer network; even if our task is reasonably simpler than

those referred by the authors. We use a four hidden layer

MLP, with linear units in the input and output layers, and

logistic units in the hidden layers.

2.6. Training

Following the ideas of [2–4, 7, 8] first we create an au-

toencoder for the input signals and another for the target

signal.

2.6.1. The autoencoder

An autoencoder is an MLP where the output layer

should reproduce the input. The middle layer can be seen

as a code to represent the input. The layers until the mid-

dle layer define an encoder and the layers after the middle

layer, inclusive, form a decoder.

encoder

input

code

output ≈ input

decoder

Figure 1. The autoencoder used in this work

For input signals we use a code longer than the input:

our code is the set of the input signals features that are

available to produce the target signal. More precisely, as

we will see, we use the input signals code to produce the

target code. For the target signal we use a short code: com-

putationally it gets more efficient.

Instead of initializing the weights of the autocoders with

random values we initialize them with those of a stack of

Restricted Boltzmann Machines.

2.6.2. Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is a network

with two layers: visible and hidden with no intralayer con-

nections. Connections in a RBM are bidirectional. In the

main version all units are binary and stocastic, but here in-

put units will be real valued and we will start with binary

hidden units and in a next step real valued. The activation

function we use in the visible units is either the logistic

function or the identity. Weights and bias are randomly

initialized.

visible layer (N units)

hidden layer (K units)

Figure 2. Restricted Boltzmann Machine- bidirectional

weights

In the first step of the RBM training phase we will use

Contrastive Divergence (CD) learning [9, 10], to ensure

that the value of each visible unit depends on the value

of many hidden units (distributed representation). CD-

learning (here we use 1-step) consists on updating the con-

nection weights in the following way:
• Given the values vi of the RBM input layer, the binary

state, hj , of hidden unit j, is set to 1 with probability

σ(bj +
∑

i

viwij)

where σ is the logistic function, bj is the bias of hidden

unit j and wij is the weight of the connection from visible

unit i to hidden unit j.

• From the 0-1 values of the hidden units we generate

new values s̃i for the visible units. In the case of li-

near visible units, we set s̃i = bi +
∑

j hjwij and in the

case of logistic visible units the value of si is given by

s̃i = σ(bi +
∑

j wij).
• The added value ∆wij to wij will be

∆wij = ǫ

(
< vi ∗ σ(bj +

∑

i

viwij) >

− < ṽi ∗ σ(bj +
∑

i

ṽiwij) >

)

454



Where ǫ is a small constant and < . > represents the aver-

age value on the data.

In a second step of the RBM learning procedure, to ac-

celerate reduction of reconstruction error, we use Mean

Field (deterministic) learning [11]. The difference to CD-

learning is: instead of generating the new values, s̃i, from

the sampled 0-1 values, hi, of the hidden units, we gene-

rate them from the probabilities, σ(bj +
∑

i viwij). The

updating rule for the weights remains the same.

2.6.3. Stacking two RBMs to build an au-

toencoder

To initialize the weights and bias of a signal’s autoen-

coder, the first RBM we build has the signal as its visible

layer; the values of the hidden layer from the first RBM

will be used as the visible layer of the second RBM. There-

fore, the first RBM has linear visible units, and, the second

has logistic visible units.

Afterwords, the bidirectional weights of the first and

second RBM are used for the directional weights of the

autoencoder. In a general RBM, we will note W and WT ,

respectively, the matrices of the weights from the visible to

the hidden layer, and, from the hidden to the visible layer.

In this way, we get the matrices W1, WT
1

, W2 and WT
2

.

a) b)

W1

W2

input

W1

W2

W
T

2

W
T

1

output

fi
rs

t
R

B
M

secon
d

R
B

M

Figure 3. a) the stack of RBMS and b) the autoencoder we

build from it

With these weights, we build an MLP whose input layer

is the visible layer of the first RBM, the first hidden layer

is the hidden layer from the first RBM, the second hidden

layer is the hidden layer from the second RBM, the third

hidden layer is again the hidden layer from the first RBM

and the output layer is the visible layer from the first RBM.

The bias from the RBMs units are used in the obvious way

in these MLP. This is the way we initialize the autoencoder.

To improve accuracy on reconstructing the input, we up-

date the weights using standard backprop algorithm.

2.6.4. Building the final four hidden layer

MLP from two autoencoders

To get our final four layer MLP, we connect, the encoder

from the input signals, with the decoder from the target

signal, using a simple perceptron. This perceptron receives

as input, the code from the input signals, and should output

the code from the target signal.

input signals encoder
input signal

input signal
code

target code

perceptron

target signal

target decoder

Figure 4. Initializing the final 4-hidden layer MLP from

the input signals and target autoencoders

The perceptron is initialize with random weights, and

after, we update the weights according to the rule:

∆wij =< inputioutputj > − < inputi ˜outputj >

where inputi and outputj are data values and ˜outputj
is the 0-1 output produced by the perceptron with the

present weights, sampling from the Bernoulli distribution

with p = σ(bj +
∑

i siwij).

In a second step we use a similar learning rule, but set
˜outputj = σ(bj +

∑
i siwij).

After learning the perceptron weights, we improve the

weights between the first, second and third layers, of our

final MLP. For that, we use backprop algorithm on a new

MLP, with one hidden layer, builded from those layers and

the weights between them.

To finish training, we use backprop on the final four

layer MLP.

2.7. Using the patches to reconstruct the

missing signal

To get the 30-second missing signal, we averaged, for

each data point, the contribution of all the reconstructed

patches that contain the point.

455



3. Results

The method is computationally very demanding, but, in

most of the signals from the data set, the results are very

good.

The autoencoders associated with the signals, input and

target, are able to extract the main features, and reproduce

the most important characteristics of the signals, even in

the presence of much noise. In the great majority of the

records, it is possible to get a very small error, in the train-

ing data, when producing target signal from the input sig-

nals. In a small number of records, that was not enough to

get a good reconstruction of the target signal, in the last 30

seconds.

CVP
output from the MLP

Figure 5. A 10-second patch of target signal CVP and

reconstruction, during training time, in record c59.

In the Challenge there were two events, each one with

its scoring algorithm:

Event 1- Let K be the quocient between the sum of the

squares of the errors and the signal variance. The score of

a reconstruction is the maximum between zero and 1−K.

It measures the overall accuracy of the reconstruction.

Event 2- The score of a reconstructions is the maximum

between zero and the correlation coefficient of the signal

and its reconstruction.

The final score on each event is the sum of the scores on

each of the 100 records.

This method got a score of 83 on event 1 and 90.6 on

event 2. These were the best scores among participants in

the 2010 PhysioNet/Computing in Cardiology Challenge.

4. Discussion and conclusions

We described here a method to reconstruct the last 30

seconds of a signal, using (some of) the other signals in

the record, and the past of the missing signal. The method

needs, first of all, to be able to learn to reproduce the tar-

get signal from the other signals, during training time (9

minutes and 30 seconds). For that, the input signals must

provide enough information, to extract a rule that outputs

the missing signal, even if only approximately. Secondly,

to be able to reproduce a certain pattern of the missing sig-

nal, this methods needs the same pattern to be significantly

present in training time, otherwise that behavior is mostly

not learned.

The computational efficiency of this method should be

improved, perhaps finding some shortcuts.

References

[1] Moody GB. The physionet/computing in cardiology chal-

lenge 2010: Mind the gap. In Computing in Cardiology

2010, volume 37. Belfast, 2010; [in press].

[2] Hinton GE. Reducing the dimensionality of data with neu-

ral networks. Science July 2006;313(5785):504–507.

[3] Hinton GE. Learning multiple layers of representations.

Trends in cognitive Sciences 2007;11:428–434.

[4] Hinton GE. To recognize shapes, first learn to generate im-

ages. In P. Cisek TD, (Eds.) JK (eds.), Computational Neu-

roscience: Theoretical Insights into Brain Function. City,

State of Publication: Elsevier, 1983; 400–402.

[5] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM,

Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng

CK, Stanley HE. PhysioBank, PhysioToolkit, and Phy-

sioNet: Components of a new research resource for

complex physiologic signals. Circulation 2000 (June

13);101(23):e215–e220. Circulation Electronic Pages:

http://circ.ahajournals.org/cgi/content/full/101/23/e215.

[6] Bengio Y, Lecun Y. Scaling learning algorithms towards

ai. In Bottou L, Chapelle O, Decoste D, Weston J (eds.),

Large-Scale Kernel Machines. MIT Press, 2007; .

[7] Hinton GE. Learning to represent visual input. Phylosofical

Transactions of Royal Society B 2010;365(5785):177–184.

[8] Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy

layer-wise training of deep networks. In Schölkopf B, Platt

J, Hoffman T (eds.), Advances in Neural Information Pro-

cessing Systems 19. Cambridge, MA: MIT Press, 2007;

153–160.

[9] Hinton GE, Osindero S, Teh YW. A fast learning algorithm

for deep belief nets. Neural Comput 2006;18(7):1527–

1554. ISSN 0899-7667.

[10] Carreira-Perpiñan MA, Hinton G. On contrastive diver-

gence learning. In Cowell RG, Ghahramani Z (eds.),

aistats05. Society for Artificial Intelligence and Statistics,

2005; 33–40.

[11] Hinton GE. Boltzmann machine. Scholarpedia 2007;

2(5):1668.

Address for correspondence:

Rui Rodrigues

Dep. de Matemática, Faculdade de Ciencias e Tecnologia

2829-516 Caparica, Portugal

rapr@fct.unl.pt

456


