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Abstract

For various biomedical applications, an automated

quality assessment is an essential but also complex task.

Ensembles of decision trees (EDTs) have proven to be a

suitable choice for such classification tasks. Within this

contribution we invoke EDTs to assess the usability of

ECGs. Our classification relies on the usage of simple

spectral features which were derived directly from individ-

ual ECG channels. EDTs are generated by bootstrap ag-

gregating while invoking the concept of random forrests.

Though their simplicity, the trained ensemble classifiers

turned out to be a very robust choice yielding an accuracy

of 90.4 %. Therewith, the proposed method offers a good

tradeoff bewteen accuracy and computational simplicity.

Further improving the accuracy, however, turns out to be

hardly feasible considering the chosen feature space.

1. Introduction

In ECG processing, the quality assessment of signals,

or even signal excerpts, is an essential issue for telemedi-

cal applications as the one targeted by the CinC Challenge

2011. But even considering other areas it is often favorable

to exclude signal portions from the analysis rather than de-

riving incorrect, eventually missleading, assumptions from

those segments. A proper assessment of a signal’s usability

thus contributes to a successful automated ECG analysis.

Assessing the usability of ECGs constitutes a typical

classification task. Decision trees (DTs) have been effec-

tively used for regression and classification tasks. Sim-

plicity when applying DTs, interpretability, the ability to

handle missing attributes as well as the characteristic of

being non-parametric are considered as main advantages

of DTs. In contrast, DTs run a high risk of overfitting to

training data and may require rather complicated structures

to solve simple problems satisfactory [1]. Furtheron, con-

sidering classification tasks, it has been shown, that DTs

usually do not reach the performance of more sophisticated

approaches such as Support Vector Machines [2].

An attempt to improve the efficacy of modestly perform-

ing classifiers, so-called weak learners [3], consists in en-

sembling a number of them [4]. Using an ensemble of in-

dividual classifiers (called base classifiers) instead of a sin-

gle individual classifier has not only shown to improve the

results in comparison to the base classifier’s performance,

but even may outperform sophisticated classifiers [2]. This

renders the application of ensemble methods an interesting

approach for many classification tasks.

Unfortunately, improved results by invoking ensembles

are gained at the expense of reduced interpretability and

increased computational effort [5]. When considering DTs

as base classifiers, though the ensemble implies an in-

creased complexity, the computational effort is usually

kept manageable as each of the base classifiers constitutes

an exceptional easy classification paradigm. Depending on

the application, the reduced interpretability, in turn, may

constitute a significant drawback of applying ensembles.

Just in the context of the CinC challenge interpretability,

indeed, would be a nice feature in order to provide imme-

diate assistance for the user to create an improved record

when a first attempt failed.

Within this contribution we seek to exploit the strength

of ensemble learners in order to create well-performing

classifiers. By the way, we try to evaluate the possibility

to obtain a simple classifier from a well working ensem-

ble which complies with the desirable property of being

interpretable.

2. Methods

2.1. Decision trees

When considering classification tasks, a decision tree T

is a tree shaped classifier which consists of nodes t and

edges. Any tree origins from a node without any incoming

edge, called root node. The terminal nodes, i.e. nodes

which do not possess any outcoming edges, are called

leaves. The remaining nodes are called internal nodes. To

each leaf a class or even a class probability is assigned.

Each of the non-leave nodes represents a split regarding

the input space. Such split is represented by a decision

Φ (.). Most often, univariate decision, i.e. Φ (.) = Φ (x)
of the from “x ≥ threshold” or “x ∈ set” where x repre-

sents a single attribute, are considered.

Growing a classification tree faces the task of re-
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cursive partitioning the input space. The input space

is commonly represented by a learning set L =
{(xn, yn) |n = 1, . . . , N} (also referred to as training

data) consisting of N instances which are represented by

a feature vector x and its belonging class y. To classify

an instance x by a trained decision tree, i.e. making hy-

pothesis h (x) on the class membership of x, the instance

is propagated through the tree and assigned to the class to

which the leaf belongs where the instance ends up.

Various implementations to train DTs have been de-

scribed in the literature. Proposed variants vary as regards

the criterion function which guides the tree growing, al-

lowed splitting rules or the way in which trained trees are

pruned. Amongst proposed variants, ID3 [6], C4.5 [7]

and CART (classification and regression trees) [8] consti-

tute prominent concepts to grow decision trees. Usually,

such concepts can be understood as algorithmic frame-

works which still exhibit some degrees of freedom when

growing a DT.

2.2. Ensemble learners

Decision trees are considered as so-called weak learn-

ers, i.e. it is assumed that they may produce an hypothe-

sis that performs only slightly better than random guess-

ing [3]. Moreover, they have been shown to be unstable in

that sense that small changes between learning sets L1 and

L2 may result in considerable modifications in the result-

ing trees TL1
and TL2

[9]. Considering the former aspect,

the need to improve the results of applying DTs is appar-

ent. The latter, however, constitutes the basis for succes-

fully using ensembles instead of individual trees.

Ensemble methods build up their decision on the com-

bined output of several individual classifiers: the most

common methods of combination rely on simple major-

ity voting or even weighted aggregation of the individual

results [5]. Thereby, the diversity of its base classifiers

is one of the cornerstones of efficient ensembles [4]. The

most popular way to introduce diversity is to vary the train-

ing data. However, precondition to induce diversity is the

previously refered instability of the base classifiers. Even

to vary the learning data different methods have been out-

lined. Some of them vary the training data without consid-

ering the results of previous training iterations (e.g. Bag-

ging (short for Bootstrap Aggregating) [9]), others do con-

sider the devolution in the training (e.g. Boosting algo-

rithms as AdaBoost [10]).

We decided to use Bagging as it was shown to be very

robust even in the case of outliers. Through Bagging, vari-

ations are introduced into the ensemble by using bootstrap

samples LBS
i to train each of the base classifiers. To cre-

ate a bootstrap sample NBS =
∣

∣LBS
i

∣

∣ instances are drawn

randomly from L with replacement [11]. This results in

partially overlapping, but differing learning sets.

Beyond varying L, even other methods are known to

improve the performance of ensembles by increasing their

diversity. Common approaches include the usage of vari-

able classifier paradigms, the variation of classifier’s inher-

ited properties (e.g. randomly initialized weights in Multi

Layer Perceptrons) or adapting the feature space. Consid-

ering DTs as base classifiers, these approaches have been

denoted as Random-Forrests [12]. The latter approach,

adapting the feature space, also is known as Random-

Subspaces [13]. Random-Subspaces are implemented by

considering just a subspace of the feature space X at each

split when growing T . Random-Subspaces can be easily

combined to bagging by which the accuracy of an ensem-

ble is increased and the training effort is reduced at the

same time [12].

3. Implementation

3.1. Features

Our choice of the features to be used, including the

channels from which they are derived, relies on three con-

straints: (1) Each channel has same importance when a

record is classified. (2) Inconsistencies regarding the ori-

entation of a channel relative to the other channels are not

considered as reason to discard a record. (3) The features

should be elementary to reduce effort of calculation. From

constraint 1 we derived that all channels somehow should

be incorporated in the algorithm. Following constraint 2,

the features can be extracted independently from all chan-

nels. Considering constraint 3, our classification relies ex-

clusively on the usage of ordinary spectral features.

According to ECG’s frequency contents (coarsely), we

define the ranges FSI = 0.5Hz − 40Hz, representing

the most important signal information, FLF = 0.0Hz −
0.5Hz, representing low frequency noise, and FHF =
45Hz − 250Hz, representing high frequency noise. Each

single signal channel is partitioned in 4 segments of equal

length (2.5 s). From those segments and from the whole

signal we extract the power in the previously defined fre-

quency regions. Thereto, after windowing by using a Ham-

ming window, the Fourier Transform is calculated and ab-

solute values are extracted from the respective frequency

bands. In addition to using mere powers, the power ra-

tio of SI and LF power, and the power ratio of SI and HF

power are extracted. These features are extracted from all

channels. Therewith, all in all 300 features are derived per

record (see table 1 for an overview).

Under constraint 1 the occurrence of a realization, not

its belonging to one channel is of major importance. Its

thus advantageous to sort the realizations of each feature

by their ranks. To assess the quality of a record we do not

consider all realizations but just the mean and the extrema

regarding each feature to characterize that record. Thereby,

278



Table 1. Characterization of the used features where i indicates the used channel → i = 1, 2, . . . , 12 and j the segment

which is used if the signal is not considered as a whole → j = 1, 2, 3, 4.

Features Description

PSI
i , PSI

i,j Power in the signal band FSI

PHF
i , PHF

i,j Power in the high frequency band FHF

PLF
i,j , PLF

i,j Power in the low frequency band FLF

PSI HF
i , PSI HF

i,j Signal power to high-frequency power ratio → PSI HF
i =

PSI
i

PHF
i

, PSI HF
i,j =

PSI
i,j

PHF
i,j

PSI LF
i , PSI LF

i,j Signal power to low-frequency power ratio → PSI LF
i =

PSI
i

PLF
i

, PSI LF
i,j =

PSI
i,j

PLF
i,j

the powers derived per segment are regarded as a single

attribute and the following reduced feature set (F1 to F35)

is derived:

F1: Max SI power := maxi
(

PSI
i

)

F2: Mean SI power := 1
12

∑

i

(

PSI
i

)

F3: Min SI power := mini
(

PSI
i

)

F4: Max segment SI power := maxi,j
(

PSI
i,j

)

F5: Min segment SI power := mini,j
(

PSI
i,j

)

F6: Max HF power := maxi
(

PHF
i

)

...

F35: Min segment SI-LF ratio := mini
(

PSI LF
i

)

where i indicates the used channel, j the segment.

3.2. Classifier

The training of each single tree is covered by the frame-

work which is established by CART. CART creates trees

which just make use of binary splits. As splitting criterion

we use the Gini-Index without considering other possibil-

ities (justified as the used criterion function is assumed to

have minor influence on the final results [1, 8]). As stop-

ping criterion in the tree growing process we invoke a min-

imum number of instances Nmin which has to be repre-

sented by each leave. To evaluate the influence of this

number, Nmin is variable with Nmin ∈ {1, 6, 50}1. No

pruning is done as the ability to generalize is a result of re-

lying on the ensemble. To train tree Ti, a bootstrap sample

L(BS)
i of size |L| = 1000 is drawn from L. In each split

we only consider
√
N ≈ 6 attributes, thus implementing

a Random Forrest. An ensemble E consists of 100 tress.

This size was chosen as larger ensembles should not per-

form worse than smaller ones and the computational effort

1Actually more choices were evaluated, but the given ones are consid-
ered throughout the remaining article

to train and run the ensemble is small, even with this big

number of DTs [9]. The ensemble assigns the class by ap-

plying a mean rule

hE (x) = argmax
j

NTrees
∑

i=1

hi,j (x) (1)

where the hypothesis hi,j (x) is the support of the ith tree’s

winning leaf t∗ to class j, i.e. p (j|x). If Nmin = 1 it holds

p (j|x) ∈ {0, 1}. To allow some statistical evaluation and

assess the influence of random drawing we trained 50 en-

sembles for each of the evaluated Nmin.

3.3. Simplifying ensembles

As stated before, beyond mere classification we are in-

terested in the possibility of simplifying a well-working

ensemble in order to obtain an interpretable classifier.

Thereto, an intuitive way is to create pruned versions of

the base classifiers Ti, and evaluate their distance to the en-

semble by the indicator function IhE ,hi
(x) where I equals

1 for hE (x) = hi (x). The individual tree Ti to be cho-

sen to represent the ensemble is the one which maximizes
∑

x∈SetA IhE ,hi
(x).

4. Results

Figure 1 shows the typical evolution of the out-of-Bag

(ooB) error for ensembles with differing Nmin. Table 2

gives an overview over the mean error on the training data

(Set A), ooB errors and the results concerning Set B.

As the correct classifications for Set B are not avail-

able to date, the possibilities regarding the pruned clas-

sifiers are limited. However, by calculating the distance

(1-0-loss) compared to our challenge entries an idea about

the pruned classifier’s performance can be obtained. The

distance between two hypothesises h1 and h2 is calculated

after
∑

x∈SetB (1− Ih1,h2
(x)). Figure 2 contains the dis-

tances.
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Table 2. Classification errors (in %) for different Nmin.

Errors on Set A and ooB-Errors are given as mean ± sd

(to Set B one ensemble for each Nmin was applied).

Nmin Set A ooB Set B

1 0.21± 0.03 7.41± 0.33 10.4

6 3.4± 0.16 7.12± 0.29 9.6

50 5.9± 0.14 6.97± 0.24 9.8
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Figure 1. ooB-Errors for differing Nmin.

5. Discussion and conclusions

As indicated by the final results of 90,4 %, the proposed

method constitutes an reasonable solution. Although our

first results were quite promising, to improve them, or even

modify them noticeable, by invoking differing numbers of

Nmin turned out to be hardly possible. This holds, as

stated by figure 2, though there are deviating class assign-

ments in up to 25 records between our challenge entries.

In average, those deviations cancel each other out. We un-

derstand these findings, as well as the outcome of some

additional experiments which we could not report here, as

a hint that an even more accurate classification is not fea-

sible using our feature space. Considering the complexity

of the 12 channel ECG, this outcome is reasonable as our

feature space constitutes an extremly simplified approach.

Interestingly, also the single tree classifiers do not per-

form much different. Considering the indifferent influence

of deviating classifications which was previously stated

(see figure 2), even those differences may not necessarily

mean a degradation of the results. This renders the us-

age of interpretable, individual classifiers rather interest-

ing. However, as concerns the used features, throughout

the individual classifiers there is no obvious tendency to

use a certain feature.

To summarize, we rate our classification suitable consid-

ering its tradeoff between accuracy and computational sim-

plicity (even more when considering the individual trees

which perform rather similar to the ensembles). However,
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Figure 2. Pairwise distance between classifiers. x-axis and

y-axis state the ensembles for diffferent Nmin (Nmin =
1, 6, 50) and individual trees T1, T6, T50 which were de-

rived from these ensembles, respectively.

as accuracy is surely considered to be more important than

simplicity, future research should attend to the possibility

of an expanded feature space.
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