Correlation between Spectral Measures of Systolic Blood Pressure Variability and Heart Rate Variability during Paced Breathing, Standing and Exercise

Salvador Carrasco-Sosa¹, Alejandra Guillén-Mandujano¹,²

¹División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, DF, México
²División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana, DF, México

Abstract

To provide insight on the somewhat controversial issue of the physiological correlates of spectral indexes of systolic pressure variability (SPV) we assessed the relations between them and those of heart rate variability (HRV) in 20 subjects during two sympathetic maneuvers, standing (S) and exercise (E). We also evaluated the percentage of statistical differences among 50-s epochs (PSDE) of the spectral measures dynamics obtained in 5-min steady-state conditions. From time-frequency spectra, high-frequency power of RR intervals (HF RR), low-to-high-frequency ratio (LF RR/HF RR), low-frequency of systolic pressure (LF SP), high-frequency of systolic pressure (HF SP), high-frequency of respiration (HF Re) and HF SP-HF Re time-frequency coherence were computed. LF SP-lnHF RR, LF SP-RR and LF SP-LF RR/HF RR correlations were -0.73±0.09, -0.77±0.06, and 0.66±0.13 respectively. During E, HF RR decreased, HF SP increased (p<0.001) and HF Re-HF SP coherence was 0.93±0.05. Global PSDE of the measures was 41±18%. HRV spectral measures show strong correlation with LF SP power, novel evidence that supports its suitability as sympathetic index. The differential effect of E on HF RR and HF SP and high HF SP-HF Re coherence documented the mechanical respiratory origin of HF SP. Spectral measures of supposedly steady-state maneuvers present high PSDE.

1. Introduction

In clinical studies the low-frequency power of systolic pressure (LF SP) is commonly used as an index of sympathetic vasomotor activity, because it is non-invasive, relatively simple to compute and capable of dynamically assessing the sympathetic vasomotor activity [1]. These characteristics make LF SP an appealing indicator. However, evidences obtained from patients [2] and animals [3] indicate that its use as autonomic indicator is somewhat controversial. It is accepted that the high-frequency power of systolic pressure (HF SP) depends on a mechanical respiratory effect [1], despite little evidence to support this concept.

It is likely that human autonomic cardiovascular function is mostly unsteady. This notion has great implications in the traditional spectral analysis of cardiovascular variability, because the usual practice is to apply methodologies that require the stationarity of RR intervals (RR) and systolic pressure (SP) series. Most of the times the stationarity of the series is presumed rather than tested [4]. When stationarity is tested, the researcher must face the difficult task of selecting a procedure from multiple approaches or contexts [5].

To provide insight on these issues, we assessed the relationships between the spectral indexes of systolic pressure variability (SPV) and of heart rate variability (HRV) during two sympathetic maneuvers and controlled breathing (CB). Additionally, we evaluated the percentage of statistical differences among epochs (PSDE) of the spectral measures dynamics obtained in steady-state maneuvers.

2. Methods

2.1. Subjects

Twenty healthy, normotensive and sedentary subjects, 13 men and 7 women, were studied. Mean age, height and weight were 23.4±1.6 years, 164±8 cm and 61.2±13 kg respectively. Their written informed consent was requested to participate.

2.2. Protocol

Volunteers visited the laboratory twice. The first time, their health status and anthropometric variables were evaluated, and in the second visit the experimental stage was carried out. The 5-min-long maneuvers employed to induce specific changes in the cardiac autonomic activity were: lying with spontaneous breathing (L), considered the control condition; postural change from lying to standing (S) and exercise (E). We also evaluated the percentage of statistical differences among 50-s epochs (PSDE) of the spectral measures dynamics obtained in steady-state maneuvers.
standing position (S), which elicits a sympathetic activity increase; lying with CB at 0.2 Hz with increased tidal volume of around 2.0 liters, and a single bout of 100W cycling exercise (E), which provokes substantial vagal withdrawal. Uniformity of the maneuvers performance was maintained as much as possible. Resting periods between maneuvers were 5 min long.

2.3. Recorded variables and signal acquisition

ECG was detected at the CM5 bipolar derivation using a bioelectric amplifier (Biopac Systems). Non-invasive blood pressure was measured by Finapres (Ohmeda). The respirogram was obtained by means of a stretching pneumograph (Nihon Kohden). ECG, blood pressure and respirogram signals were digitized at a sampling rate of 500 Hz via an acquisition and display system (Biopac Systems).

2.4. Data processing

R-wave peaks and SP values were detected to form the RR and SP time series which, together with respirogram, were cubic-spline interpolated, resampled at 4 Hz and detrended. Time-frequency spectra, estimated with the smoothed pseudo-Wigner-Ville distribution, were integrated in the standard low and high frequency bands to compute high-frequency power of RR (HFRR), low-to-high-frequency ratio (LFRR/HFRR), LFSP, HFSP and high-frequency of respiration (HFr). Time-frequency coherence between HFSP and HFr was obtained by cross-spectral analysis. Coherences greater than 0.5 were considered significant. The first minute of every maneuver was discarded because it included the transient changes produced by the onset of the maneuver. Indexes dynamics were ensemble-averaged for visualization purposes, and were segmented into 50-s epochs for statistical comparisons. PSDE was computed as the percentage of statistically significant differences (p<0.05) found in the intra-epochs comparisons of each spectral measure dynamics in relation to the total number of comparisons.

2.5. Statistical analysis

The values of the variables dynamics sampled at 50 s intervals were expressed as mean ± standard deviation (SD). Differences among these values during the maneuvers were tested by ANOVA for repeated measures. Post-hoc pairwise comparisons were performed by the Tukey test. Individual pooled mean values of the 50-s segments of the indexes dynamics throughout the different maneuvers were used to compute linear regression and correlation between SPV and HRV measures. Statistical significance was accepted at p<0.05.

3. Results

Table 1 presents the PSDE of the variables during the different maneuvers. Mean PSDE of all variables in all maneuvers was 41±18%, with a minimum of 14.9% for RR and a maximum of 60.4% for HFSP, both in CB condition.

Table 1. Mean ± SD of the PSDE for each variable and maneuver. N=20

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>S</th>
<th>E</th>
<th>CB</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFSP</td>
<td>38.8±21.8</td>
<td>35.7±16</td>
<td>34.1±16</td>
<td>34.1±22.3</td>
</tr>
<tr>
<td>HFRR</td>
<td>44.3±21.5</td>
<td>50.2±17</td>
<td>50.6±20</td>
<td>57.3±24.4</td>
</tr>
<tr>
<td>RR</td>
<td>17.6±17.3</td>
<td>43.9±27</td>
<td>58.0±23</td>
<td>14.9±16.4</td>
</tr>
<tr>
<td>LFRR/HFRR</td>
<td>36.9±18.7</td>
<td>32.9±15</td>
<td>36.5±20</td>
<td>41.6±15.2</td>
</tr>
<tr>
<td>HFSP</td>
<td>41.6±24</td>
<td>44.7±26</td>
<td>43.1±21</td>
<td>60.4±14</td>
</tr>
</tbody>
</table>

Ensemble averages of the variables dynamics and their mean values sampled each 50 s are depicted in Figure 1. RR (Fig. 1A) and lnHFRR power (Fig. 1B) decreased progressively, with respect to L, during S and E conditions (p<0.001 for all segments), while LFRR/HFRR ratio (Fig. 1C) and LFSP (Fig. 1D) increased progressively (p<0.001).

Figure 1. Ensemble averages and mean±SD values at 50s of the variables dynamics during L (dotted line), S (thin line) and E (thick line) maneuvers. (A) RR, (B) lnHFRR, (C) LFRR/HFRR ratio and (D) LFSP power. * p<0.01 between maneuvers.
For each subject, linear correlations and regressions between SPV and HRV indexes were computed using the pooled mean of each variable dynamics epoch (Fig.2).

Mean individual correlations of \(\text{LF}_{SP}\)-RR, \(\text{LF}_{SP}\)-lnHF\(_{RR}\) and \(\text{LF}_{SP}\)-LF\(_{RR}/\text{HF}_{RR}\) relations were -0.77±0.06, -0.73±0.09, and 0.66±0.13 respectively. Individual and mean linear regressions are shown in Figure 3. Intersubject dispersion of the regressions was large.

4. Discussion and conclusions

Our main findings are: 1) High PSDE are found for all spectral measures dynamics in the four supposedly steady-state conditions. 2) As indicated by HF\(_{RR}\), mean heart period and LF\(_{RR}/\text{HF}_{RR}\), S and E maneuvers induce different levels of sympathetic activation with respect to L. 3) These HRV indexes show strong correlation with LF\(_{SP}\) power, providing evidence that supports its suitability as a sympathetic index. 4) That HF\(_{RR}\) and HF\(_{SP}\) change in opposite directions during E and the strong coherence between HF\(_{Re}\) and HF\(_{SP}\) support the mechanical respiratory origin of HF\(_{SP}\).

Dynamic exercise at 100 W produces greater sympathetic activation and vagal withdrawal than active postural change, as indicated by the changes in LF\(_{RR}/\text{HF}_{RR}\), heart rate and lnHF\(_{RR}\) power (Fig. 1), observations that corroborate previous findings [6].
Reported evidence supporting the usage of LFSP power as vasomotor sympathetic indicator is sometimes controversial. Studies performed in patients [2] or in animals [3] conclude that LFSP power does not appear to be suitable as quantitative index of sympathetic activity and that it has poor correlation with other measures of autonomic function. Previous studies that provide evidence in favor of LFSP power as indicator of sympathetic activity have been performed mostly in animals [7,8,9]. There are only a few human studies with this aim, either with patients [10] or healthy subjects. It has been reported that LFSP power increased during 90° upright tilt in both healthy [8] and hypertensive subjects [11], and that it increases during moderate dynamic exercise [12]. To the best of our knowledge, this is the first study to document in healthy subjects that during different levels of sympathetic drive, LFSP power and HRV spectral measures present strong correlation (Fig. 3), extending the reported evidence in favor of the good performance of LFSP power as a sympathetic marker.

Although further studies are required, our findings suggest that LFSP power could be a suitable complement to: 1) LFRR power, an ambiguous measure that depends on both the sympathetic and the vagal activity [1] and whose amplitude decreases dramatically during exercise [12], drawbacks not presented by LFSP power. 2) Muscle sympathetic nerve activity, invasive and technically difficult to measure, characteristics that make it little used in clinical studies.

Few studies seek the functional correlates of HFSP power. It has been reported that HFSP power is a mechanical consequence of respiration [8] and also that during exercise HFSP power is mainly due to the mechanical effect of hyperpnea [12]. CB with high tidal volume increases the HFRR power, effect analogous to vagal stimulation, and also HFSP power. In our study, E produces great decrease of HFRR power due to vagal withdrawal and increase of HFSP power (Fig. 4), which presents strong coherence with respiration (Fig. 5). These findings indicate the respiratory origin of HFSP power, mediated mainly through a non-neural mechanism, without discarding a minor influence of the variability of cardiac output.

The high PSDE values found during supposedly steady-state maneuvers (Table 1) bear implications for the statistical handling of the results. Furthermore, the common and erroneous practice of applying spectral analysis techniques that require stationarity [4] to analyze non-stationary signals is avoided when a time-frequency distribution is systematically applied to perform the spectral analysis of any cardiovascular variable and in any condition.

In conclusion, as indicated by HRV spectral measures, S and E maneuvers induce different levels of sympathetic activation. These indexes show strong correlation with LFSP power, providing evidence that supports its suitability as a sympathetic index. The differential effect of E, increasing HFSP and decreasing HFRR, and the significant coherence between HFSP and HFRR document the mechanical respiratory origin of HFSP. Spectral measures of supposedly stationary recordings present high PSDE, established with a time-frequency distribution, technique that should be systematically used for the spectral estimation of cardiovascular series, regardless the stationarity, or lack thereof, of the signals.

References

Address for correspondence.
Salvador Carrasco-Sosa
Depto. Ciencias de la Salud, S-353
Universidad Autónoma Metropolitana–Iztapalapa.
Av. San Rafael Atlixco # 186, C.P. 09340 D.F., México.
sacas@xanum.uam.mx