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Abstract

ICU patients are vulnerable to in-ICU morbidities and
mortality, making accurate systems for identifying at-risk
patients a necessity for improving clinical care. Here, we
present an improved model for predicting in-hospital mor-
tality using data collected from the first 48 hours of a pa-
tient’s ICU stay.

We generated predictive features for each patient using
demographic data, the number of observations for each of
37 time-varying variables in hours 0–48 and 47–48 of the
stay, and the last observed value for each variable. Miss-
ing data are a common problem in clinical data, and we
therefore imputed missing values using the mean value for
a patient’s age and gender group.

After imputing the missing data, we trained a logis-
tic regression using this feature set. We evaluated model
performance using the two metrics from the 2012 Phy-
sioNet/CinC Challenge; the first measured model accu-
racy using the minimum of sensitivity and positive predic-
tive value (Event 1), and the second measured model cali-
bration using the Hosmer-Lemeshow H statistic (Event 2).
Our model obtained Event 1 and 2 scores of 0.516 and 14.4
for test set B and 0.482 and 51.7 for test set C, respectively,
providing better estimates of in-hospital mortality risk than
existing methods such as SAPS-I.

1. Introduction

Intensivecare unit (ICU) patients are especially vul-
nerable to adverse events including in-hospital mortality.
Therefore, more accurate methods for identifying high-
risk patients are a crucial step for improving clinical care.
However, development of such systems is complicated by
various factors, including the diversity of data collected
over the course of each ICU stay and the frequency of
missing data for key predictive variables.

The acute physiology and chronic health evaluation
(APACHE) [1], mortality probability model (MPM) [2,3],
and simplified acute physiology score (SAPS) [4–6] are
among the most commonly used models for predicting risk
of mortality in ICU patients [7,8]. Though widely used and
having multiple revisions to accommodate changes in pa-

tient populations and advances in hospital care, these scor-
ing systems still have key limitations. The most compre-
hensive and accurate of these scoring systems, APACHE,
is a proprietary tool that requires licensing and is heav-
ily dependent on selecting the correct admission diagnosis
[8]. MPM and SAPS examine only a few variables, result-
ing in easy to use but overly simplistic models that might
overlook important physiological measurements. While
using only a few key data elements to develop predictive
models made sense historically, the availability of detailed
electronic medical records and modern machine learning
methods has made this rationale obsolete. Most impor-
tantly, these models are unable to deal with missing data
and assume that unobserved parameters are normal, which
can result in underpredicted risk [9].

In this paper, we discuss the development of our entry to
the 2012 PhysioNet/Computing in Cardiology Challenge,
which aims to develop better methods for predicting in-
hospital mortality. We describe the construction of several
feature sets using data collected during the first 48 hours
of a patient’s ICU stay, the use of these feature sets for
training a range of predictive models, and the evaluation of
these models. We provide results for several of our mod-
els in the first two rounds of the competition. Finally, we
describe our choice of the model for the final competition
round and evaluate our final scores.

2. Methods

2.1. Feature sets

We derived our feature sets using training data from
4,000 ICU patients (Set A) that included demographic in-
formation (gender, age, height, and ICU type) and time-
series measurements for 37 physiological variables. We
cleaned this dataset by removing unknown or missing val-
ues, indicated by negative values in the data files. Addi-
tionally, we discarded entire records for six patients that
were either missing gender information or lacked any time-
series measurements.

We constructed one feature set (referred to as the “last
available measurement” feature set) using the last recorded
measurement for each of the 37 time-series variables or
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Table 1. Comparative performance of various imputation
methods. A logistic regression model was used to predict
patient survival in the training (Set A) data, and perfor-
mance was evaluated using the two scoring metrics used
in the 2012 Physionet/CinC Challenge. The table entries
indicate the (mean± standard deviation) of event scores
obtained through 10-fold cross validation.

Imputation method Event 1 score Event 2 score
Population mean 0.467± 0.051 11.6± 5.4
Age/gender mean 0.467± 0.051 10.6± 4.3
Age/gender median 0.463± 0.052 12.1± 5.2
SVD 0.468± 0.057 11.9± 3.3
PPCA 0.460± 0.052 13.1± 5.6
kNN 0.451± 0.050 10.4± 4.3

“not available” if the variable was never observed for a
given patient. We also included the number of observations
for each variable over hours 0–48 and 47–48 as indicators
for the overall health of the patient.

We constructed other feature sets (referred to as the
“binned measurements” feature set) by aggregating mea-
surements for each variable into 12- or 24-hour bins and
using the summary statistics (minimum, maximum, mean,
standard deviation, and number of observations) for each
variable-bin pair as model features.

In each of these feature sets, several of the variables,
including respiratory rate, troponin I, troponin T, and
hemoglobin oxygen saturation (SaO2), were missingin a
overwhelming majority of the patients. Rather than dis-
card these features, we converted them to binary features
indicating whether any measurement of these variables oc-
curred within the first 48 hours of a patient’s ICU stay. We
also created a binary feature to indicate whether a patient
was ever placed on mechanical ventilation during the first
48 hours of his or her ICU stay.

2.2. Imputation

Inconsistent recording oftenaffects the availability of
measurements in clinical data sets. Within our training
data, only a small subset of the variables, such as Glas-
gow Coma Score (GCS), temperature, and heart rate could
be found in> 98% of the patients. For the majority of the
time-varying variables (19 of 37), at least 20% of the pa-
tients had missing observations. The prevalence of missing
data led to feature sets where no patient had a complete set
of features. Thus, we evaluated various imputation meth-
ods that use measures of central tendency, matrix factoriza-
tion, or clustering to estimate missing values in our feature
sets. Prior research has shown improvements in predictive
model performance on incomplete clinical datasets using
central tendency or matrix factorization-based imputation

techniques [10].
Six approaches of varying complexity were used to es-

timate the missing observations. The simplest imputation
method replaced missing values with the feature mean es-
timated from the entire patient population. The second
method accounted for fundamental physiological differ-
ences between genders and among age groups by imput-
ing values for each patient using the mean feature values
for the gender and age decade of that patient. Our third
method was also based on patient gender and age but used
the median of each feature instead of the mean to account
for the skewness or non-Gaussian distribution of the data.

Matrix completion approaches to imputation included
singular value decomposition (SVD) and probabilistic
principal components analysis (PPCA). In SVD-based im-
putation [11,12], the patient-by-feature matrix is factorized
using SVD, and missing values are then replaced by those
estimated in the reduced rank matrix reconstructed using
the top few eigenvalues. This process is repeated until
the change in consecutive matrices falls below a specified
threshold. PPCA-based imputation associates a probabilis-
tic model with the observed data through a Gaussian la-
tent variable model, and missing values are imputed using
an iterative, expectation maximization algorithm [13, 14].
Clustering-based methods impute missing values based on
the average of thek nearest neighbors [11].

Table 1 illustrates the effect the choice of imputation
method has on the Event 1 and Event 2 scores of a logistic
regression model trained with the last available measure-
ment feature set. Imputing using the feature mean for a
patient’s gender and age group has the best overall perfor-
mance and is computationally cheap to implement. Thus,
we used this imputation approach to develop all of our
models entered into the 2012 Physionet/CinC Challenge.

2.3. Model development

We estimated theperformance of various models de-
veloped using several combinations of features and algo-
rithms using 10-fold cross validation. Models were eval-
uated on their estimated Event 1 (the smaller of sensitiv-
ity and positive predictive value to measure model accu-
racy) and Event 2 (Hosmer-Lemeshow H statistic to mea-
sure model calibration) scores.

Those models with high Event 1 scores were trained us-
ing the entire Set A data set to estimate model parame-
ters and submitted as our Challenge entries to be scored
against a testing dataset (Set B). We dealt with patients
missing gender information in set B by marginalizing the
risk probabilities predicted by a model over gender.

Our final entry scored against an unseen test set (Set
C) was constructed by combining the two best perform-
ing models evaluated using Set B. This combined model
predicted a class label (“Died” or “Survived”) using the
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Table 2. Ourbest performing models when evaluated for
accuracy (Event 1/E1) and calibration (Event 2/E2) using
Set B testing data. Entries for Set A indicate the (mean±
standard deviation) of each score observed in 10-fold cross
validation. Entry 2 was the best performing Event 1 model,
while Entry 1 was the best performing Event 2 model.

Set A Set B
Entry E1 E2 E1 E2
1 0.467±0.051 10.6±4.3 0.497 14.4
2 0.451±0.049 14.1±7.5 0.516 30.3
5 0.472±0.062 12.0±3.4 0.502 25.7
10 0.459±0.069 35.0±6.4 0.511 80.2

model with highestEvent 1 scoring and a risk probability
using the model with the lowest Event 2 score.

3. Results

Table 2 shows our best scoring entries evaluated against
test Set B. Entry 1 was an unregularized logistic regres-
sion model that used the last available measurement fea-
ture set. Entry 2 was an unregularized logistic regression
model that used the last available measurement feature set
along with the values of diastolic blood pressure (BP), sys-
tolic BP, mean arterial BP,FiO2, GCS, heart rate,tem-
perature, urine, and weight averaged from hours 0–48 and
hours 42–48 as additional features. Entry 5 was anL1-
regularized logistic regression model that used the 24-hour
binned measurements feature set. Entry 10 averaged the
risk probabilities from an elastic net model [15, 16] using
the 12-hour binned measurements and the Entry 2 model.

All of our models outperformed the Set A SAPS-I Event
1 and Event 2 scores (0.296 and 68.4, respectively) pro-
vided by the competition organizers. Existing risk scoring
systems like SAPS-I only consider the “worst” observed
value in a given time period, and our results demonstrate
the increase in predictive power provided by expanding the
set of features used by a model.

Surprisingly, our Entry 2 model, which only considers
the last acquired and average value of each time-series
variable, outperformed Entries 5 and 10, which also in-
cluded minimum and maximum values in the feature set.
This result may be an indication of over-fitting in the En-
try 5 and 10 models despite the use of regularizers or of
the fact that a smaller set of features is all that is necessary
to capture a patient’s state.

Although the mortality rates differed significantly across
ICU types, neither the inclusion of ICU type as a fea-
ture nor training separate models for each type of ICU
improved our scores significantly. We also explored us-
ing forward and reverse stepwise feature selection, sup-
port vector machines (SVMs), random forests, boosting,

and ensemble models. However, these algorithms only
provided a marginal increase in accuracy (Event 1 score)
while being more poorly calibrated (increased Event 2
score); therefore, we did not include these models in any
of our Challenge submissions.

Based on the test set B results, we developed a combined
model for our final submission that used Entry 2 to predict
patient outcome (Event 1) and Entry 1 to generate a risk
score for evaluating model calibration (Event 2). When run
against testing data in Set C, this model produced an Event
1 score of 0.482 and an Event 2 score of 51.7. The signif-
icant increase in the Event 2 score for our model on Set C
data indicates that either our model is not as well calibrated
as we had hoped or that Set C contains a subpopulation of
patients with significantly different characteristics than the
population in Sets A and B.

We note that while cross validation provides us with rea-
sonable estimates for a model’s Event 1 score, it grossly
underestimates the Event 2 score. Although the cross val-
idated Event 2 scores for the training data provides hints
about the relative performance of the models, this consis-
tent underestimation led to our decision to select models
for submission based solely on Event 1 performance. We
suspect that this deficiency arises from each cross vali-
dation holdout set being one tenth the size of the Set B
and Set C data sets coupled with the fact that the Hosmer-
Lemeshow H statistic is extremely sensitive to sample size
when deviating from perfect calibration [17].

4. Conclusion

This work presented an improved model for predicting
in-hospital mortality risk using 37 time-varying variables.
The features of the logistic regression model use simple
statistics (the last observed value and mean) from clinical
measurements, the number of measurements in the first 48
hours, and the last hour combined with conditional mean
imputation derived from age and gender to estimate miss-
ing data. Our algorithm outperforms the SAPS-I score
with respect to positive predictive value and model cali-
bration.
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