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Abstract

In this paper, we explore the application of motif discov-
ery (i.e., the discovery of short characteristic patterns in a
time series) to the clinical challenge of predicting intensive
care unit (ICU) mortality. As part of the Physionet/CinC
2012 challenge, we present an approach that identifies and
integrates information in motifs that are statistically over-
or under-represented in ICU time series of patients ex-
periencing in-hospital mortality. This is done through a
three step process, where ICU time series are first dis-
cretized into sequences of symbols (by segmenting and par-
titioning them into periods of low, medium and high mea-
surements); the resulting sequences of symbols are then
searched for short subsequences that are associated with
in-hospital mortality; and the information in many such
clinically useful subsequences is integrated into models
that can assess new patients. When evaluated on data from
the Physionet/CinC 2012 challenge, our approach outper-
formed existing clinical scoring systems such as SAPSII,
APACHEII and SOFA, with an event 1 score of 0.46 and
an event 2 score of 56.45 on the final test set.

1. Introduction

The Physionet/CinC2012 Challenge focused on the pre-
diction of in-hospital mortality in intensive care unit (ICU)
patients. In addition to baseline clinical variables (e.g.,
age, gender, height, and weight) as many as 37 in-hospital
physiological and laboratory variables were available as
time series for each patient over the first 48 hours of ad-
mission to the ICU. In our study, we focussed primarily
on these time series data, and explored the hypothesis that
there is much useful information in motifs (i.e., short char-
acteristic time series patterns) within these data that can aid
the prediction of in-hospital ICU mortality. This hypoth-
esis is motivated by the observation that many short pat-
terns in ICU time series have physiological interpretations
and significance: for example, drops in blood pressure can
correspond to episodes of acute hypotension while short
periods of high heart rate may correspond to tachyarrhyth-
mias. Methods that can identify and leverage these short

patterns in ICU time series may therefore have value in the
assessment of ICU patients.

2. Methods

Our overall approach consists of three steps:
• First, irregularlysampled time series data for each avail-
able ICU variable are converted into regularly sampled
time series with (potentially missing) values at each two
hour interval. We discretize these regularly sampled time
series by partitioning the values into low, medium or high
classes. In this manner, we transform the original irregu-
larly sampled ICU time series into regularly sampled sym-
bolic sequences.
• Second, the frequenciesof short subsequences within
these transformed signals are measured and subsequences
that occur significantly more often (or less often) in pa-
tients experiencing ICU mortality than would be expected
by chance alone are identified. This process makes use of
statistical measures of discrimination and adjusts for mul-
tiple hypotheses.
• Finally, thefrequencies of subsequences associated with
in-hospital mortality are used are features to train models
to evaluate new ICU patients.

Aspects of this work resemble earlier efforts by Chia et
al. to predict adverse outcomes following acute coronary
syndrome using information in heart rate time series[1].
Notable differences between the approach described here
and the work of Chia et al. include extending motif dis-
covery to multivariate time series as well as dealing with
data that are irregularly sampled.

In more detail, because of the irregular data sampling
inherent in many ICU time series, we organize these data
into a temporal grid. The 48 hour recordings in the Phy-
sionet/CinC 2012 Challenge training set are divided into
24 non-overlapping 2 hour windows. The time series for
each ICU variable is made regularly sampled in the fol-
lowing way. If the variable has a single sample in the 2
hour time window, that value is used in the new time se-
ries. If the variable has multiple values in the window, the
mean is used. If the variable has no values in the window,
the value in the new series is marked as missing. Each
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Table 1. 10features with the highest magnitude coefficients for models using length 1, 2, and 3 patterns respectively. Vari-
ables are listed in decreasing order of magnitude. The label (+) indicates a positive association with in-hospital mortality,
while (-) indicates a negative association.

Rank L =1 L = 2 L = 3
1 K (-) K (-) K (-)
2 Age (+) Albumin: Medium Low (+) Temp: Low Low Low (+)
3 ALP (+) Age (+) HR (-)
4 Platelets: Medium (-) Glucose: Missing High (+) ALP (+)
5 Temp: Medium (-) Urine: Low Missing (+) Albumin: Low Missing Medium (+)
6 Urine: High (-) ALP: High Missing (+) PaO2: Missing Missing High (+)
7 Glucose: High (+) GCS: Medium Missing (+) Age (+)
8 BUN: High (+) pH: Missing Low (+) Temp: Medium High High (-)
9 pH: Missing (+) Albumin (+) RR: Medium Medium Medium (-)
10 ALT (+) Urine: Medium High (-) ALP: Medium Missing High (+)

variable is then discretized into three equiprobable bins,
reflecting low, medium, and high values of the variable.
These bins are defined using the full set of values in all
patients from the training set, with divisions at the 33rd
and 66th percentiles. Missing values are considered as a
separate value. This resulted in 4 discrete values for each
variable (i.e., low, medium, high, and missing).

As clinically useful patterns, we consider all exact sub-
sequences of a given length in each variable’s discrete se-
quence. We estimate the frequencies with which these pat-
terns occur in the data both within patients who experi-
enced in-hospital mortality and those who did not through
direct counting. For length 1 (a single discretized value),
when considering the full set of available variables this cor-
responds to 144 possible patterns. For length 2 (two con-
secutive discretized values), this corresponds to 576 pos-
sible patterns. This number increases exponentially as the
length of patterns used increases.

Due to the large number of possible patterns, particu-
larly with longer pattern lengths, we apply the rank sum
test on the training data to each pattern’s frequencies over
patients as a feature selection criterion [2]. The rank sum
test (also known as the Mann-Whitney U statistic) is a non-
parametric test that assesses whether the medians of two
distributions (in this case the frequencies of subsequences
in patients who did and did not suffer in-hospital mortal-
ity) are significantly different. To account for the testing
of many patterns, we use the Bonferroni correction to ad-
just the p values of the large number of hypotheses [3]. A
pre-correction threshold of 0.05 is used to determine sig-
nificance. Only patterns that are found to differ signifi-
cantly in occurrence between patients with and without in-
hospital mortality are used for training a model to predict
in-hospital ICU mortality. In our work, we use the frequen-
cies of selected patterns as features to train a support vector
machine (SVM) classifier. Our choice of an SVM classifier

is motivated by the ability of this approach to train models
in high-dimensional spaces while generalizing well to out
of sample data [4].

In addition to the pattern frequencies, we also use a
set of baseline variables. Specifically, we use as many
available variables comprising the Acute Physiology Score
portion of the APACHEII severity score [5], the SAPSII
severity score [6], and the SOFA score [7] as possible. If
multiple measurements of these variables are available the
mean, minimum, and maximum measurements over the
course of the 48 hours are used.

Finally, to address the limitation that SVMs do not di-
rectly produce probabilistic outputs, we use Platt scaling
to assign risk probabilities to patients based on the SVM
predictions [8]. Platt scaling fits a sigmoid function to the
SVM prediction, converting the SVM’s continuous deci-
sion values into usable risk probabilities.

3. Experiments

We trained andevaluated our approach on the Phys-
ionet/CinC 2012 Challenge A, B and C data sets. In ad-
dition to measuring the standard evaluation metrics for
the challenge, we also studied the SVM model developed
through our approach to identify the most useful features.
As the features were normalized before training the SVM
model, the magnitude of the coefficients gives an indica-
tion of the strength of the relationship between the variable
and in-hospital mortality. In addition, to evaluate whether
the use of motif frequencies improved performance over
only using baseline features, we compared versions of our
SVM model with and without baseline features, and with
varying lengths of patterns. Evaluation for these experi-
ments was done using 10 random splits of the test set A
data into data sets consisting of 60% training data, 20%
held out data for parameter selection, and 20% held out
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Table 2. AUROC and minimum of positive predictive value and sensitivity for models using only the baseline features,
with length 1 pattern features added, and with length 2 pattern features added.

Model AUROC Min(PPV, Sens) Patterns Possible Patterns Selected
Baseline 0.78 0.42 n/a n/a
L = 1 0.81 0.45 144 56
L = 2 0.81 0.46 576 104
L = 3 0.82 0.45 2,304 149
L = 1,2,3 0.81 0.43 3,024 260

data for final evaluation. We assessed the AUROC and
event 1 score (minimum of PPV and sensitivity) as the
measure of improvement.

4. Results

4.1. Official results

Our approach achieved an event 1 score of 0.50, and an
event 2 score of 36.63 on test set B and an event 1 score of
0.46 and an event 2 score of 56.45 on test set C.

4.2. Useful features

Table 1 shows the 10 features with the highest magni-
tude coefficients for models using patterns of lengths 1, 2,
and 3.

Of the 10 features with the highest coefficients, many
of the measurements are those used to measure systemic
or organ dysfunction as in SOFA or the other severity
scores. For example, with motifs of length one, moder-
ate measurements of several variables such as platelets and
temperature were negatively associated with mortality as
would be expected (i.e., extreme values in either direction
were found to be unhealthy). Another interesting result is
that serum blood urea nitrogen (BUN) was highly asso-
ciated with in-hospital mortality, despite both APACHEII
and SAPSII choosing serum creatinine level [5, 6]. Addi-
tionally, in the case of motifs of length one, information
about whether pH was missing was negatively associated
with mortality. This can most likely be attributed to health-
ier patients not having the lab work done that would yield
that measurement. We also found that age was highly asso-
ciated with in-hospital mortality for all three motif lengths;
this is not surprising given that age is consistently associ-
ated with mortality in many application domains and fea-
tures in both APACHEII and SAPSII.

Our experiments showed that physiological motifs had
increased importance in models when motif length was
longer. For example, in the experiment with a motif length
of three 6 of the top 10 variables in the models were phys-
iological motifs. We believe this reflects the importance

of sequential changes in ICU variables rather than snap-
shot values of these variables as points of time. We also
interpret motifs of the kind missing-missing-high as being
patient progressions where individuals deteriorated to the
level where diagnostic tests or interventions had to be per-
formed. For example, the motif of PaO2 missing-missing-
high may likely correspond to patients who deteriorated to
the point that they had to be put on a ventilator. There are
several other instances of transitions from a value to miss-
ing or missing to a value that are positively associated with
mortality.

The use of pattern frequencies of any length improved
the AUROC and minimum of positive predictive value and
sensitivity over the model using only the baseline features.
There was little improvement in using longer patterns (L=2
or L=3) over the shorter patterns. Using all patterns of
length 3 or less did not improve performance over the use
of each pattern length individually. While the number of
possible patterns increases exponentially with length, the
number of patterns selected grows much slower.

5. Discussion

In this paper, we explored the hypothesis that there is
clinically useful information in short patterns within ICU
time series to predict in-hospital mortality. The results of
our experiments performed on the CinC/Physionet 2012
Challenge data sets support this hypothesis and demon-
strate that time series motifs may provide information that
is complementary to baseline variables comprising clini-
cal scoring systems such as SAPS, APACHE and SOFA.
Importantly, in addition to empirical improvements over
these existing scoring systems, a motif-based approach is
also readily interpretable and can be used to compactly ap-
preciate changes in patient physiology and interventions
with prognostic implications.

While the results of our work are encouraging, we con-
clude with a brief discussion of some limitations of our
study. We observe that our experiments explored a fairly
narrow range of motif lengths. Our decision to limit our
experiments to a motif length of three helped improve
computational efficiency and also restricted the effects of
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multiple hypotheseswhen exploring many different mo-
tifs. However, it is possible that larger motif lengths (e.g.,
4 to 12) may have led to more substantial improvements
in predicting in-hospital ICU mortality. Related to this is
the observation that our use of a Bonferroni correction may
have been unnecessarily conservative and led to important
patterns being ignored. We also note that while SVMs are
widely used in many application domains, our use of a sim-
ple 2-class SVM may have failed to exploit additional im-
provements (e.g., available through L1-regularization) in
discrimination of patients at risk of in-hospital ICU mor-
tality. Finally, we also believe that there may be opportu-
nities to improve performance by modifying other aspects
of our study (e.g., using windows of time series features
other than 2 hours; using more symbols than just four etc.)
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