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Abstract 

Intensive care medicine is a large share of the health 
care budget, and in the last decade there has been an 
increasing focus on making intensive care medicine more 
cost-effective by the efficient use of resources while still 
providing the best outcome for critically-ill patients. One 
important set of tools to perform this are critical illness 
severity assessment scores such as Simplified Acute 
Physiology score (SAPS-I) which help clinicians 
prioritize resources and determine the appropriate 
diagnostic/therapeutic plan for each patient. These scores 
are also used for assessing how medications, care 
guidelines, surgery, and other interventions impact 
mortality in Intensive Care Unit (ICU) patients. In an 
attempt to develop an improved patient-specific 
prediction of in-hospital mortality, we propose an 
algorithm based on logistic regression and Hidden-
Markov model using vital signs (vitals), laboratory values 
(labs) and fluid measurements that are commonly 
available in ICUs. The algorithm was trained on 4000 
ICU patient records and was validated on two sets of 
unseen test data of 4000 ICU patients each. These 
datasets were obtained as a part of PhysionNet/CinC 
Challenge 2012 (prediction of the mortality in ICU). Two 
different metrics, namely, (Event1) the minimum of 
sensitivity and positive predictive value and (Event2) a 
goodness of fit measure (range-normalized Hosmer-
Lemeshow (H) statistic) was used to assess the 
algorithm’s performance. The proposed algorithm 
achieved an Event 1 score of 0.50, 0.50 and an Event 2 
score of 15.18, 78.9 compared to SAPS-I (Event 1: 
0.3170, 0.312 and Event 2: 66.03, 68.58) in the two 
different validation dataset respectively. Furthermore, 
since the proposed algorithm uses instantaneous values of 
vitals and labs, it could be used as a continuous, real-
time patient specific indicator of mortality risk.  

   
1. Introduction 

ICUs are responsible for an increasing percentage of 
the health care budget, and thus are a major target in the 

effort to limit health care costs [1]. Hence, there is an 
increasing need, given the resource availability 
limitations, to make sure that additional intensive care 
resources are allocated to those who are likely to benefit 
most from them. Critical decisions include interrupting 
life-support treatments and issuing do-not-resuscitate 
orders when intensive care is considered futile. In this 
context, mortality assessment is a crucial task, being used 
to predict not only the final clinical outcome but also to 
evaluate ICU effectiveness, and allocate resources.  

Since the early 1980s clinical scores have been 
developed to assess severity of illness and organ 
dysfunction in the intensive care unit (ICU) setting [2, 3]. 
In the context of intensive medicine, severity scores are 
instruments that stratify patients according to a risk 
assessment based on clinical information about the 
patient.  For example, SAPS-I is one such score which is 
widely used to account for population differences in 
studies aiming to compare how medications, care 
guidelines, surgery, and other interventions impact 
mortality in ICU patients [4].  Tools like SAPS-I have 
been used to improve the quality of intensive care and 
guide local planning of resources.  

This paper presents the results of an improved patient-
specific ICU mortality assessment algorithm. It makes 
use of several computationally sophisticated techniques. 

One of the most promising recent innovations in the 
development of algorithms for use in ICUs is the use of 
data-mining and machine learning techniques [2]. The 
goal of data mining is to discover interesting patterns 
from raw data by using automatic discovery tools [5]. 
Machine learning techniques include such diverse 
techniques as rule-based approaches, artificial neural 
networks, logistic regression, and support vector 
machines. 

Another set of techniques being applied to intensive 
care problems are dynamic statistical models such as the 
Hidden Markov Model (HMM) [6]. The underlying 
assumption of the statistical model is that the signal can 
be well characterized as a parametric random process, and 
the parameters of the stochastic process can be 
determined (estimated) in a precise, well-defined manner 
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[6]. Recently, state transition (Markov) models have been 
used to analyze progression of chronic diseases [7]. 

In an attempt to develop a patient-specific prediction 
of in-hospital mortality, we propose an algorithm based 
on logistic regression and HMM using vitals, labs and 
fluid measurements that are commonly available in ICU.  

The data used to develop/validate the algorithm was 
obtained as part of PhysioNet/CinC Challenge 2012. The 
data consist of demographics, hourly measurements of 
vital signs and lab test results of 12,000 ICU patients. The 
proposed algorithm was trained on 4000 ICU patients (set 
A) (for which the gold standard of in-hospital mortality 
was provided) and it was validated on two different 
datasets of 4000 ICU patients each (set B and set C). The 
performance of the algorithm was assessed for its 
detection capability based on Event1 (minimum of 
Sensitivity and Positive Predictive Value) and prediction 
capability based on Event 2 (a range-normalized Hosmer-
Lemeshow (H) statistic [8]). The result of the proposed 
algorithm was compared with SAPS-I, one of the 
commonly used critical illness severity assessment scores.  

The paper is organized as follows: Section 2 presents 
the ICU clinical data, details of the proposed algorithm 
and its features. Section 3 describes the results and briefly 
discusses the rationale for the proposed algorithm. 
Finally, Section 4 makes some concluding remarks. 

 
 

2. Methods 

2.1. Intensive care unit data 

The data used to develop the algorithm was obtained 
as part of PhysioNet/CinC Challenge 2012. The data 
consist of up to 41 different variables, which include 
general descriptors (age, gender, height, weight) and time 
series (hourly measurements of vital signs and lab test 
results) from the first 48 hours of the first available ICU 
stay of each of 4,000 patients chosen at random from a 
larger set. Each patient record has a retrospective gold 
standard of in-hospital mortality. Patients under the age of 
16 and whose initial ICU stays were shorter than 48 hours 
(approximately the median) are excluded; there are no 
other exclusion criteria. For more details regarding the 
datasets, please refer to [9]. 

In addition to the 4000 ICU patient records, two 
unseen test datasets of 4000 ICU patient each are used for 
the validation of the proposed algorithm.  

 
2.2. Proposed Algorithm 

Two different algorithms were developed targeting a 
good performance in Event 1 and Event 2, respectively. 
The proposed algorithm is a combination of these two 

algorithms for their respective events. The details of each 
algorithm and its features are described below. 

 
2.3. Event 1 specific 

A general framework of the Event 1 specific algorithm 
is shown in Figure 1. The Event 1 specific algorithm uses 
logistic regression to combine different features such as 
age, PF ratio (PaO2/FiO2), creatinine, blood urea 
nitrogen (BUN), bilirubin, Glasgow Coma Score, 
glucose, disease development (sepsis and pneumonia), 
and the output of HMM. The different features used 
target oxygen transport and multi-organ system 
dysfunction for mortality risk assessment. The optimal 
threshold is chosen as the one that maximized the Event 1 
metric in the training dataset of 4000 ICU patient records.  

 
 

 
 
 
Figure 1. A general framework of Event 1 specific 

mortality prediction.  
 
 
Hidden Markov Model (HMM) has been used for the 

last twenty years in the field speech recognition and in 
health care in both industry and academia; it is a dynamic 
model in nature that makes predictions over time [6]. The 
basic idea behind HMM is the estimation of hidden states 
of a process using observed variables over time. Figure 2 
represents the general framework of the HMM based 
mortality prediction. 

HMM requires three probabilities for each variable 
‘V’, namely, the probability of each variable over the 
entire population data, P(V), the probability of each 
variable for only the people who lived, P(V|A), where ‘A’ 
is Alive, and finally the probability of each variable for 
the people who died, P(V|D), where ‘D’ is Dead. All the 
probabilities discussed above are calculated from the data. 
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The different possible state transitions are shown in 
Figure 3. 

 

 
 
Figure 2. Estimation and prediction of critically ill 

patient’s mortality state and the associated risk, P(S|M), 
the probability of state given measurements. 

 

 
 
Figure 3. Markov chain for critically ill patient’s 

mortality state. 
 
The Markov Chain (MC) shown in Figure 3 provides 

more insight into critically ill patient’s changing mortality 
state over time, using available measurements (vitals and 
labs) in the ICU.  

To account for trend in patient’s state, a mortality state 
sequence is computed. For example, if three 
measurements are available over the patient’s ICU stay, 
the possible state transition sequences for the patient’s 
mortality state are: {(A1,A2,A3), (A1,A2,D3), (A1,D2,D3), 
(D1,D2,D3)}. For m measurements, there are m+1 possible 
state sequences. HMM provides the state sequence that 
best fits the patient’s mortality state. 

The choice of variables used is based on the 
observations and expert knowledge of the ICU clinicians 
with many years of experience (Table 1). The variables 
are selected in such a way that when a critically ill 
patient’s oxygen transport performs poorly, 
measurements at that point in time from the related 
variables raises the mortality risk. Subsequently when the 
patient goes into organ dysfunction, other than liver, the 
measurements from other related variables will further 

raise the mortality risk. Eventually when the patient goes 
into liver dysfunction, the risk computed at that point is 
likely the highest mortality risk. 

The Event 1 score achieved by HMM is 0.49, and the 
Event 2 score is 183 (relatively high for Event 2) on 
training dataset. Therefore, HMM is combined with other 
features as shown in Figure 1 through a logistic 
regression model. 

 
Table 1. Variables used for HMM based mortality 
detection. 
 

Oxygen 
Transport 

Organ 
Dysfunction 
other than 

Liver 
Liver 

Dysfunction Demographic 

Lactate Creatinine Bilirubin Age 
PaCO2 WBC ALT ICU 

Type 
SysABP 

(NI) TroponinT AST  
DiasABP 

(NI) HCT   

HR UrineDaily   

RespRate Mg   
SaO2 Na   

PFratio Glucose   
pH GCS   
 
 

2.4. Event 2 specific 

A general framework of the Event 2 specific algorithm 
is shown in Figure 4. The Event 2 specific algorithm is 
based on logistic regression and it utilizes three features, 
namely, Age, Urine Output/day and Glasgow Coma score 
for the prediction of mortality. 

 

 
 
Figure 4. A general framework of Event 2 specific 

mortality prediction. 
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3. Results and discussion 

The results of the Event 1 specific and Event 2 specific 
algorithms on training dataset (set A) and validation 
dataset (set B) are shown in Table 2. The proposed 
algorithm combines the two algorithms for their 
respective events.  The SAPS-I scores for the training and 
validation dataset are also shown in Table 2. The 
proposed algorithm is then validated with an additional 
unseen test dataset (set C) and the results are shown in 
Table 3.  
 
Table 2. Results on training (set A) and validation dataset 
(set B). 
 

Algorithm 
Datasets 

Training (set A ) Validation (set B) 
Event 1 Event 2 Event 1 Event 2 

Event 1 
specific 0.52 26.9 0.50 35.2 

Event 2 
specific 0.44 5.5 0.43 15.2 

SAPS-I 0.30 68.4 0.31 66.0 
 
Table 3. Results on validation datasets (set B and set C). 
 

Algorithm 
Validation datasets 

Set B Set C 
Event 1 Event 2 Event 1 Event 2 

SAPS-I 0.31  66.0 0.31 68.58 
Proposed 
Algorithm  0.50 15.2 0.50 78.9 

 
As seen from Table 2 and 3, the performance of the 

proposed approach is better than that of SAPS-I. In 
addition, the performance of the proposed approach is 
comparable to the validation dataset except for Event 2 
metric in set C (Table 3). 

Although both parts of the algorithm use logistic 
regression (which was chosen because it is more 
transparent than approaches such as support vector 
machines), the features used are quite different. We found 
that just the three listed features worked together to 
produce the best Event 2 score on dataset A and held up 
well on dataset B. However, it did not hold up so well on 
dataset C. Adding certain other features improved the 
Event 1 score, but lowered the Event 2 score on the 
training dataset (A). In particular, adding the HMM-based 
feature, while improving the overall performance on 
Event 1, always lowered the Event 2 score by a small 
margin. Nevertheless, this algorithm was fairly consistent 
across training (A) and validation datasets (B and C) on 
Event 1.  

4. Conclusion 

A patient-specific prediction algorithm of in-hospital 
mortality has been presented. The proposed algorithm is 
based on logistic regression and a Hidden-Markov model 
using data (vitals, labs and fluids) that are commonly 
available in ICU. It outperforms the commonly used 
critical illness severity assessment score, namely, SAPS-I. 
In addition, since it uses the instantaneous values of vitals 
and labs, it could be used to obtain patient specific 
trajectories of mortality risk assessment. The patient 
specific trajectories of mortality risk could be used by the 
clinicians to help them prioritize resources and determine 
the appropriate diagnostic/therapeutic plan for each 
patient. 
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