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Abstract 

In this paper, we develop an effective framework to 
predict in-hospital mortality (IHM) during an intensive 
care unit (ICU) stay, on the basis of specific medical 
variables. This work involves both binary mortality 
predictions and mortality risk estimates, corresponding to 
Event-1 and Event-2 of the Computing in Cardiology 
(CinC) Challenge 2012. Our proposed framework 
contains 1) feature extraction from medical variables by 
linear interpolation, histogram analysis, and temporal 
analysis; and 2) mortality classifier learning under 
Cascaded Adaboost learning model. A released dataset 
set-a of ICU medical records is used as training set, 
where cross validation is performed to evaluate our 
proposed framework. Our framework achieves Event-1 
Score1 0.806 and Event-2 Score2 24.00, which 
outperform those obtained from SAPS-1 score (Score1 
0.296 and Score2 68.39) on the same dataset. Over 
another dataset set-b, our framework obtains Event-1 
Score1 0.379 and Event-2 Score2 5331.15. 

 
1. Introduction 

 Medical variable measurements from Intensive Care 
Unit (ICU) play an important role in clinical research.The 
measurement values of medical variables during ICU stay 
reflect patients' physical conditions and variations which 
are able to predict disease progression in-hospital 
mortality rate in CinC-Challenge 2012 [3]. However, it is 
a challenging task to model an accurate relationship 
between mortality rate and the observed medical variables 
due to the following reasons: 1) disease progression is 
analyzed based on a group of medical variables at specific 
time; 2) the training set does not provide a uniform 
measure plan for all patients, that is, different patients 
generate different medical measurements at the same 
time; 3) it is impossible to measure all medical variables 
with high frequency during all ICU stay, and the missing 
data will bring more difficulties in the statistics of 
medical variables. 

In this paper, we propose an algorithm to estimate in-

hospital mortality rate according to the measurement 
values of medical variables during a 48-hour ICU stay. A 
mortality classifier is generated from training set. 

 
2. Data 

The medical data released for CinC-Challenge-2012 
[3] consists of three datasets: set-a, set-b, and set-c. Each 
of them contains medical records of 4000 patients during 
ICU stay. Set-a is used as training set because its 
outcomes of in-hospital mortality are provided as ground 
truth. Set-b and set-c without ground truth labels are used 
as testing sets. The medical records in all the three 
datasets cover the same group of 37 medical variables, 
which are measured in the first 48 hours of ICU stay. In 
the following sections, we define a sequence of records 
from one patient during 48-hour ICU stay as an ICU 
sample. 

In an ICU sample, 37 medical variables are generally 
measured within the 48 hours. In addition, each ICU 
sample has 6 associated descriptors, RecordID, Age, 
Gender, Height, ICUType, and Weight. Thus an ICU 
sample consists of a total of 43 variables. Some variables 
have 2 or more measurement values within the 48-hour 
ICU stay, while some are not measured at all for a patient. 
It results in different data dimensions among different 
ICU samples. 

In training set set-a, each ICU sample is assigned a 
ground truth label. It provides the total length of ICU stay 
and the survival length of each patient. If the survival 
length is less than the ICU stay length, the patient is 
denoted as in-hospital death. In the rest of this paper, an 
ICU sample is defined as a positive ICU sample if the 
patient dies in hospital, and otherwise it is defined as a 
negative ICU sample as survival. The set-a contains 554 
positive samples and 3446 negative samples. 
 
3. Method 
3.1. Data interpolation 

To normalize all ICU samples into feature vectors with 
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a fixed dimensionality, we employ linear interpolation to 
complement missing measurement values of the medical 
variables. 37 medical variables and 2880 minutes (48-
hour ICU stay) are defined as interpolation domain. 
According to medical knowledge, we employ a normal 
value for each of the 37 original medical variables. 

For each medical variable, a 1 ×  2880 zero-element 
vector is initialized to represent each minute of the 2880-
minute ICU stay. Then we fill in the measurement values 
according to their measurement time. Next, linear 
interpolation as Eq. (1) is performed between each pair of 
neighbouring nonzero elements. 

𝑣𝑖 =
𝑑𝑖 − 𝑑𝐿
𝑑𝐻 − 𝑑𝐿

(𝑣𝐻 − 𝑣𝐿) + 𝑣𝐿  (1) 

where 𝑑𝐿 and 𝑑𝐻 denote the indices of two neighbouring 
nonzero elements on the vector, and 𝑣𝐿 and 𝑣𝐻 are their 
corresponding values. 𝑣𝑖 from interpolation is the value at 
the index 𝑑𝑖. Besides, all the zero elements in the ends of 
the vector are assigned the values of their nearest 
neighbouring nonzero element. 

As mentioned above, some medical variables may not 
be measured during ICU stay. All the 2880 elements in its 
vector are zero without any information for interpolation. 
In this case, we assign the predefined normal value of the 
medical variable. 

The linear interpolation is applied to all the 37 medical 
variables, and each of them obtains a 1 × 2880 vector. The 
37 vectors contain all information of an ICU sample, 
which will be used as features to predict the in-hospital 
mortality. 
 
3.2. Feature normalization 

To reduce computational complexity of feature 
extraction and classifier learning, we reduce the feature 
vector of each medical variable by calculating average 
measurement values. 

For each medical variable, 2880 elements of the 
feature vector represent the corresponding measurement 
values of 2880 minutes during the 48 hours. We calculate 
a mean value for every 60 minutes, and cascade them into 
a feature vector in 48 dimensions of the medical variable 
with less dimensions. Each mean value denotes an 
average measurement of medical variable within an hour.  

The reduction is applied to all the 37 medical 
variables, and we obtain a reduced feature vector in a 
total of  37 × 48 = 1776 dimensions. Over the 4000 
samples in training set set-a, a 4000 × 1776 feature matrix 
is generated with each column corresponding to 
measurement values of a medical variable within an hour, 
and each row represent an ICU sample. Thus we define 
each row as a measurement-based feature vector. Feature 
vectors of all training samples from set-a can be merged 
into a measurement-based feature matrix. 
 

3.3. Histogram analysis 

On the basis of the measurement-based feature matrix 
as described above, we model the distributions of medical 
variables by histogram analysis. It includes direct-
histogram mapping and difference-histogram mapping. 
 
3.3.1 Direct-histogram mapping 

A column of the measurement-based feature matrix 
represents all 4000 measurement values of a medical 
variable in an hour. We generate a 72-bin histogram from 
each column of the feature matrix. This histogram 
represents characteristic distributions of the medical 
variable at this time, defined as direct-histogram, as 
shown in Figure 1. 

 
Figure 1. Direct-Histogram of blood urea nitrogen at the 20th 
hour, obtained from all training samples. 
 

The elements of the measurement-based feature matrix 
are associated with the statistical values in the direct-
histograms. For each element in the measurement-based 
feature matrix, we first check its column and the 
corresponding direct-histogram. Then the histogram bin 
of the element is calculated according to its value. Next, 
at this element, the original measurement value is 
replaced by the bin value of the direct-histogram. In this 
process, the measurement-based feature matrix is 
transformed into a statistic-based feature matrix. 
Similarly, each row of this statistic-based feature matrix 
represents an ICU sample. It contains statistical 
information of all medical variables over the ICU 
samples, so it gives more discriminatory power in the 
process of in-hospital mortality prediction.  
 
3.3.2      Difference-histogram mapping 

In addition to the direct statistics of medical variables, 
the measurement difference between the positive samples 
(death) and the negative samples (survival) can be 
adopted to analyze the in-hospital mortality.  

Instead of histogram generation from all samples, two 
72-bin histograms are calculated respectively from the 
positive samples and negative samples, as shown in 
Figure 2. We name them as positive histogram and 
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negative histogram. Considering the difference between 
the numbers of positive samples and negative samples, 
we normalize the positive histogram by multiplying 
3446/554 = 6.22 to each bin. To obtain statistics of the 
measurement difference, we calculate a difference-
histogram by subtracting negative histogram from 
positive histogram, as shown in Figure 2. From the 
difference histogram, we infer that a greater bin value 
results in a higher likelihood of in-hospital death. The 
normalization of positive histogram enables positive 
values in difference histogram to represent high 
probability of in-hospital death. 

Then we employ the same process as Section 3.3.1 to 
transform the measurement-based feature matrix into a 
statistic-based feature matrix according to difference-
histogram. The two statistic-based feature matrices have 
the same size 4000 × 1776 as the original measurement-
based feature matrix, and we fuse them vertically into a 
4000 × 3552 statistic-based feature matrix. Each ICU 
sample has a row feature vector in 1 × 3552 dimensions. 
 

 
Figure 2. Left column shows the histogram of blood urea 
nitrogen at the 20th hour, obtained from positive samples and 
negative samples respectively. Right column presents the 
difference-histogram, obtained by the difference between the 
two left histograms. 

 
Figure 3. Mapping from measurements to statistics in histogram. 

 
3.4. Temporal analysis 

Apart from the statistics of instant measurement values, 
the temporal variations of the medical variables also play 
an important role in morality prediction, as shown in 
Figure 4. It shows that temporal variation of a negative 
sample is smoother and closer to normal range. 

We divide the ICU stay into two parts in equal length 

of 24 hours, and calculate the difference of their mean 
measurement values. As mentioned in Section 3.2, feature 
vector of each ICU sample is reduced into 48 dimensions, 
corresponding to the 48 hours during ICU stay. We divide 
this vector into N parts, and calculate the difference 
values at every N/2 step (see example in Figure 5 where N 
= 4). Then N/2 difference values are obtained as temporal 
features. In our experiments, we set N = 8, 4, and 2, and 
fuse all obtained difference values into a 7 dimensional 
vector. Combining the temporal features of all 37 medical 
variables, we obtain a feature vector in 259 dimensions. It 
demonstrates the temporal variations of an ICU sample. 
 

 
Figure 4. Temporal variation of blood urea nitrogen over 
positive sample (top curve) and negative sample (bottom curve). 

 

 
Figure 5. Feature vector of a sample is divided into 4 parts, and 
we calculate the part difference for every 2 steps, where 𝜇 
represents the mean value of a part. 
 
 
3.5. Cascaded Adaboost model for 
 mortality classification 

For an ICU sample, we cascade its two feature vectors 
respectively obtained from histogram analysis and 
temporal analysis, and obtain a fused feature vector in 
3552 + 37 = 3589 dimensions. In addition to the 37 
medical variables, the variable of “Age” also plays an 
important role in the prediction of in-hospital mortality. 
Thus we append the “Age” value as an additional medical 
measurement, and extend the feature vector into 3690 
dimensions. This feature vector will serve as observation 
data of the ICU sample in the process of mortality 
classifier learning by a Cascaded Adaboost Model. 

Cascaded Adaboost model was proved to be an effective 
machine learning algorithm in real-time face detection [4]. 
The training process is divided into several stages. Each 
stage is a decision-tree-based boost model. It performs an 
iterative selection of weak classifiers, based on the 
observations of all positive samples and the negative 
samples that are incorrectly classified in previous stages. 
The selected weak classifiers are integrated into a strong 
classifier by weighted combination [1]. The strong 
classifier will be used for predicting the risk of in-hospital 
death and survival. 
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The involved weak classifier ℎ in the process of 
adaboost learning is defined by three parameters, which 
are column index  𝑗, threshold 𝑇, and polarity 𝜌. 𝑓∗𝑗 
denotes the j-th column of the feature matrix that contains 
all values of  a medical variable at a time instant. At the 
column 𝑗 of the feature matrix, we generate 48 thresholds 
that are uniformly distributed from minimum to 
maximum. Each threshold has 2 polarities as 𝜌 ∈ {−1,1}. 
One polarity indicates that the j-th column value of 
positive sample is larger than the threshold while that of 
negative sample is smaller than the threshold, and the 
other is on the contrary, as presented in Eq. (2). 

ℎ(𝑓𝑖∗) = �
𝑝𝑜𝑠 𝜌𝑓𝑖𝑗 ≥ 𝜌𝑇
𝑛𝑒𝑔 𝜌𝑓𝑖𝑗 < 𝜌𝑇 (2) 

where 𝑓𝑖𝑗 denotes the element at the i-th row and j-th 
column of the feature matrix, and 𝑓𝑖∗ denotes the i-th row 
vector that corresponds to the i-th ICU sample. 

At the beginning of each stage, we prepare the training 
samples by selecting all positive samples and the hard 
negative samples, which are incorrectly classified by all 
the previous stages. The iteration processes stops when 
99.5% of positive samples and 50% of negative samples 
are correctly classified. The Adaboost classifiers obtained 
from all stages are cascaded into the final mortality 
classifier. When the feature vector of a testing ICU sample 
is input into the final classifier, it is classified as in-
hospital death if all cascaded strong classifiers determine it 
a positive sample, and otherwise it is in-hospital survival. 

In the classification process, the weighted combinations 
of weak classifier output and the stage threshold are used 
to calculate the mortality risk for score2. 
 
4. Results and discussion 

We perform experiments of mortality prediction on the 
ICU medical data. In Event-1, two measures sensitivity 
(Se) and positive predictivity (P+) are defined based on 
true positive (TP), false positive (FP), true negative (TN), 
and false negative (FN) [3]. The Score1 is defined as the 
minimum value of Se and P+. In Event-2, a mortality risk 
is estimated for each testing sample, and the Hosmer-
Lemeshow H statistic algorithm is employed to calculate 
the Score2. 
 
4.1. Evaluation over training Set set-a 

Set-a contains 4000 ICU samples, of which 554 are 
positive samples that are death during ICU stay and the 
other 3446 are negative samples that are survival in 
hospital. Each sample generates a feature vector from 
histogram analysis and temporal variation as described in 
Section 3.  

We evenly divide the 4000 samples into three parts, 
and each part contains 185 positive samples and 1149 
negative samples. Two of the three parts are employed to 
train the mortality classifier, and the resting one part is 
used for testing. We calculate their mean value as the 

cross validation result of score1 over set-a. The result is 
0.56, which is higher than SAPS-1 [2] score 0.296.  

Next, we evaluate the mortality classifier obtained from 
all samples of set-a over itself. We can obtain the over-
fitting results score1 0.806 and score2 24.00. 
 
4.2. Evaluation over testing Set set-b 

From all samples of training set set-a, we learn a 
mortality classifier and then evaluate it over testing set 
set-b. This testing set also contains 4000 samples, and we 
generate an observation feature vector for each sample by 
analyzing the direct-histogram and difference-histogram. 
According to the black box evaluation online, our best 
results over set-b are score1 0.379 and score2 5331.15. 
The score2 evaluation based on Adaboost output is not 
well generalized to testing set. 
 
5. Conclusion 

In this paper, we have designed an effective algorithm 
to predict the in-hospital mortality and estimated the 
mortality risk of the patients during ICU stay. 
Measurement statistics and temporal variations of the 
medical variables are adopted to extract features from the 
training set. Each patient in the training set is considered 
as an ICU sample. We generate observation data of the 
sample as a feature vector, obtained by mapping the 
medical measurement values into the bin values of direct-
histogram and difference-histogram. Then the observation 
feature vectors of all samples are input into the Cascaded 
Adaboost model to learn a mortality classifier. Our 
framework achieves Event-1 Score1 0.806 and Event-2 
Score2 24.00, which outperform those obtained from 
SAPS-1 score [2] (Score1 0.296 and Score2 68.39) on the 
same dataset. 
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