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Abstract 

Advances in technology are improving the quality and 
quantity of data available in ICU, creating opportunities 
for the development of patient-specific predictive models 
to support clinical decision-making. 

The 2012 PhysioNet Computing in Cardiology 
Challenge is to develop a patient-specific model for 
predicting in-hospital mortality using data collected 
during the first 48 hours of an ICU stay. 

Our approach was to develop an algorithm 
incorporating an artificial neural network trained on 
features extracted from the patient data. We explored the 
stability of vital signs such as heart rate and blood 
pressure with a method previously used to detect 
frequency and intensity of solar ‘nanoflares’.  

The ability of the resulting model to predict outcomes 
of patients was evaluated. The model was most successful 
in Event 2 of the Challenge, receiving a score of 22.83 for 
Set B and 38.23 for Set C. For the model to be clinically 
useful and to improve on existing scoring systems such as 
SAPS, further work is needed. 

 
1. Background 

The past decade has seen rapid developments in 
computing power and digital networking capability, 
creating new opportunities for improving patient care. 
Advanced patient monitoring systems are now 
commonplace in hospitals, particularly in intensive care 
units (ICUs) where patients require close observation.  

Despite these developments, the potential of digital 
information is not being fully realised. Humans are not 
able to fully process the large volumes of data available, 
while monitoring and alarm systems often operate 
independently meaning complex interactions between 
vital signs may go unnoticed.  

Models commonly used to predict outcomes such as 
SAPS and APACHE provide useful insights over a 

population, but are too general to provide patient-specific 
estimation of outcome and risk [1,2].  

Efforts to bring together data from multiple data 
sources systems, such as MIMIC II, present opportunities 
to develop more sophisticated models that are able to 
estimate patient-specific outcomes to assist the caregiver 
[3]. 

The PhysioNet/Computers in Cardiology Challenge 
2012 calls for participants to develop models for patient-
specific prediction of in-hospital mortality using data 
collected during the first 48 hours of an ICU stay [4,5].  

Given the complexity of the data, we took a machine 
learning approach to the Challenge. Features were 
extracted from the patient data and used to train an 
artificial neural network (ANN).  

Several methods were used to extract features from the 
data. The teams background in solar physics led to the 
application of a method used previously for detecting 
solar ‘nanoflares’ because of the similarity between solar 
data and time series patient data.  

 
2. Method 

2.1. Challenge data 

Participants in the Challenge were provided with two 
datasets (Set-A and Set-B), each containing physiological 
data from 4000 ICU stays. Patient outcomes were 
available for Set-A (the training set), but patient outcomes 
for Set-B were not shared with participants. A third 
dataset (Set-C) was withheld from participants and was 
used by the organisers in independently scoring the final 
Challenge entries. 

Up to 6 general descriptors were available for each 
patient stay (for example, ICU type, age, and gender), 
along with up to 37 time series variables (for example, 
heart rate, temperature, and respiratory rate). Only stays 
of 48 hours were included in the data and not all variables 
were available in all cases.  
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The Challenge consisted of two events: Event 1 
required participants to submit an algorithm that outputs a 
prediction of in-hospital mortality (survival or non-
survival) for each record. The algorithm was scored on its 
correct classification rate, which was evaluated by taking 
the ‘best’ result of sensitivity and positive predictivity. 
Event 2 required the algorithm to estimate risk of in-
hospital death for each patient, with scoring based on 
performance against a range-normalised Hosmer-
Lemeshow test to assess ‘goodness of fit’ of the 
predictive model. 

 
2.2. Preprocessing 

Data were processed to remove extreme outliers and 
obvious errors using a filter of normal values for each 
parameter. Missing information was replaced with mean 
values for the patient population, and body mass index 
was calculated from height and weight.  

Clinical experience suggested that the nature of 
patients would vary greatly between the different ICU 
types and this was confirmed in the data. Patients in post-
surgery recovery units for example were more likely to be 
mechanically ventilated. We therefore separated the 
dataset by ICU type prior to ANN training. 
 
2.3. Features and network training 

Features were extracted from the patient records using 
a variety of methods. These features included the mean 
values of parameters over 48 hours; the variance of time 
series data, and the moments of the gradients between 
time series values. Given the group’s background in solar 
physics, we also took the opportunity to apply a method 
previously used by Harra et al for detection of solar 
nanoflares (Figure 1) [6]. 

One of the major science goals in solar physics is to 
determine how the solar atmosphere is heated and 
maintained at a higher temperature than the Sun's surface. 
One theory is that this temperature difference is a result of 
atmospheric heating by small-scale energy release events 
known as nanoflares.  

Nanoflares are short-lived, lasting for tens of seconds 
to a few minutes, and occur as a result of collisions of 
magnetic fields. They are detected by looking for 
intensity increases observed in the high-energy end of the 
spectrum in ultraviolet or X-ray emission.  

We applied a routine for detection of nanoflares to the 
patient dataset, since it was clear that in some parameters 
such as heart rate there were sudden increases and 
decreases during the 48 hour time period. We aimed to 
assess the number and intensity of these episodes during 
the stay as a measure of patient stability. 

‘Nanoflares' were detected firstly by determining a 
background level by fitting a line through the local points 

of minima. A minimum was defined as a point with three 
points on either side having values of emission measure 
greater than it. Peaks were defined as the points with a 
lower point on one side and two lower points on the other 
side, and in addition having flux at least 10% above the 
background level. 

Combinations of features were selected as inputs for 
ANNs. Entry 1 incorporated mean averages of variables 
over the 48 hours, such as mean heart rate and mean 
glucose. All other entries incorporated mean averages as 
well as additional features, such as the mean height of 
maxima and variance from the mean. 

Matlab’s pattern recognition network function, 
patternnet, was used to generate feedforward ANNs 
for each ICU type [7].  These networks were then trained 
with scaled conjugate gradient backpropagation (Matlab’s 
trainscg function) to classify features according to 
target patient outcomes [8]. 

 
 

 
Figure 1. Example of solar nanoflares. The asterisks show 
the defined brightenings. The solid line shows the derived 
background. Reproduced from Harra et al, 2001 [6]. 

 
 
To train the networks, datasets were separated into 

70% for training, 15% for validation, and 15% for testing. 
Performance of the networks was assessed according to 
the mean of square error on the validation samples. 
Training ended when the mean square error of the 
validation samples increased, indicating that 
generalization was no longer improving the network.  

ANNs were independently trained for each ICU type, 
and in all cases a three-layer network (input layer, hidden 
layer, and output layer) was used, where the number of 
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neurons in the hidden layer was between 60% and 80% of 
the number of inputs (Figure 2).   

 
 
 
 

 
 

 
Figure 2. Summary of algorithms entered for the 
Challenge. Each algorithm processes input variables for 
individual records and outputs a classification for Event 1 
(survival/non-survival) and an estimated risk for Event 2.  
 
 
 
 
3. Results 

The nanoflare detection routine was applied to 
variables including heart rate and blood pressure and 
successfully detected peaks in a number of cases (Figure 
3). However, the limited time resolution of the available 
data meant that the method could only be applied to a 
limited number of records. 

The ANN for Entry 1 took into account mean values of 
parameters over the 48 hours, while the ANN for entry 5 
took into account a range of features such as the average 
height of maxima for mean arterial pressure and variance 
from the mean for blood oxygen saturation. For records 
where the time resolution was too low to extract features, 
the mean average value for the population was used.  

The entries were most successful in Event 2, with the 
best scores being gained by entry 1 and entry 5 (Table 1). 
Entry 5 was placed 7th overall in the final scores based on 
Set-C.  
 

Table 1. Scores for competition entries. In Event 1 an 
ideal score is 1. In Event 2 an ideal score is 0. 

 
Entry Event 1 

Score 
Event 2 
Score 

Entry 1 (Set-B) 0.27 22.83 
Entry 5 (Set-B) 0.24 23.03 
Entry 5 (Set-C) 0.23 38.23 
SAPS-I Matlab (Set-C) 0.31 68.58 
SAPS-I in C (Set-C) 0.31 35.21 

 
 

 
Time from admission (minutes) 

 
Figure 3. Example of the nanoflare detection routine 
applied to heart rate activity in a patient. The asterisks 
show the defined peaks. The solid red line shows the 
derived background. 

 
 
 

4. Discussion 

We took a simplistic machine learning approach and 
achieved reasonable performance in Event 2, but further 
work is needed to achieve a useful patient-specific 
predictive model. Currently our algorithms offer little or 
no predictive improvement on the SAPS-I algorithm.  

Assessing patient stability through the application of 
the nanoflare routine would benefit from further 
exploration. Work is needed to identify whether this 
approach has any value in prediction of patient outcomes. 
In its current state the nanoflare routine is of limited 
benefit and is likely to mischaracterise stability in records 
with limited time resolution, where there are too few data 
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points to identify maxima and minima. 
One of the benefits of scoring models such as SAPS-I 

is that they are straightforward to apply at the bedside and 
they are relatively easy to interpret. In contrast, the inner 
workings of machine learning approaches such as the one 
used here are less clear to the user.  

Given that our collaboration is new, the progress made 
here is a good starting point and provides a basis for 
developing more successful predictive algorithms. Our 
focus will now be on building an archive of ICU and 
theatre data at University College Hospital and continuing 
to explore models for predicting outcome in patients. 
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