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Abstract 

Logistic regression is an appropriate analysis 
technique for this CinC Challenge problem.  Derived 
variables from provided patient data records are 
screened for significance by linear stepwise regression.  
Screened derived variables and corresponding patient 
outcome data serve respectively as the predictor and 
response variables for logistic regression analysis. Each 
of the two CinC Challenge events use separate logistic 
regression models, and include limited investigation of 
non-linear effects.  Short descriptions of excursions from 
the logistic regression approach summarize the scope of 
the effort. 

 
 

1. Introduction 

Logistic regression is a common analysis technique for 
situations with binary outcome data.  The CinC Challenge 
problem poses such a situation.  Logistic regression also 
presents a straightforward method to produce predictions 
of “in-hospital-death”, the Event 1 score metric, and 
“mortality percentage (risk)”, used in the Hosmer-
Lemeshow test statistic for Event 2 scoring.  Based on 
these observations, logistic regression is appropriate [1].   

A three phase approach follows.  The first phase is 
selection of derived variables based on the set-a patient 
data.  In the second phase, compute logistic regression 
models using those derived variables as independent 
variables and the set-a “In-hospital death (0:  survivor, or 
1: died in-hospital)” outcome-related descriptor as the 
dependent variable.  Third, apply and refine the logistic 
regression model(s) to produce Events 1 and 2 scores. 

 
2. Phase 1: derived variables 

Descriptions of the seven derived variables used for 
this work follow, where Yi = (Y0, Y1, . . ., Yj) represents the 
observations for a variable (also referred to as a 
“parameter” in the CinC Challenge literature) taken from 
a data file.  The observations span times ti = (t0, t1, . . ., tj). 
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3. Phase 2: regression methodology 

This effort uses the 40 variables described in the CinC 
Challenge literature (37 time series variables plus gender, 
height, weight).  For each of those 40 variables, the 7 
derived variables described above serve as the data for 
regression analysis.  Thus, 40∙7 = 280 derived data values 
represent the content for each patient file.  With 4000 set-
a patient files, the inputs for regression analysis consist of 
a 4000 by 280 matrix of predictor variable values, and a 
4000 by 1 column vector of outcome values (0 or 1, taken 
from the set-a Outcome data file).   

There are complications with this scheme to determine 
7 derived variables for each of the 40 data variables.  As 
expected, the data does not reflect a disciplined data 
collection policy conducted in accordance with an 
appropriate experimental design.  The derived variables 
must accommodate this fact.  Also, producing 7 derived 
variables is not viable for some of the patient data 
variables (e.g. Weight, Age, Gender, and Height).  Many 
occurrences of single entries for a specific variable in a 
patient data file preclude any of the derived variables 
requiring multiple observations and/or time stamps.  
Some data values are clearly wrong (e.g. Age=200, two 
different-valued data observations at the same time 
stamp).  The policy in these cases assigned zero values to 
the problematic derived variable element.  For example, 
when a single value for a variable occurs in a patient data 
file, the 7 element vector for that variable is [(the single 
observation value) 0 0 0 0 0 0].  The result is inconsistent 
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population of the 40 7-element spans of each 280 element 
row, and a relatively sparse, potentially singular matrix 
situation for which meaningful regression analysis is 
difficult.  After processing all 4000 data files, these zero-
value spans within the rows of the 4000 by 280 matrix are  
populated with average values from the corresponding 
column according to one of three policies: 1) overall 
average of meaningful values from the column, 2) 
average for cases with “in-hospital death = 1”, and 3) 
average for cases with “in-hospital death = 0”.  After 
experimentation with each of the three policies, policy 2) 
serves for the final submission, and is reflected in Figures 
1 and 2 results for data set-a.   

The MATLAB® “stepwisefit” function identifies the 
subset of the 280 columns with significant explanatory 
power.  There was no investigation of the Outcome 
predictions using the linear regression model produced by 
“stepwisefit”.  Only the “stepwisefit” screening feature of 
identifying significant variables was of interest. 

Next, the “n” columns identified by “stepwisefit” serve 
as input for the MATLAB® logistic regression “mnrfit” 
function.  The predictor variable matrix is 4000 by n, and 
the response variable remains the 4000 by 1 column 
vector of 0 or 1 outcome values.  The “mnrfit” function 
produces the logistic regression model coefficients, and 
the “mnrval” function uses those coefficients to estimate 
the probability of a “0” outcome (survival), or a “1” 
outcome (in-hospital death) for a given patient data file.  
Without further manipulation, the probability of a “1” 
outcome is the CinC Challenge Event 2 scoring 
“mortality percentage (risk)” value used in the Hosmer-
Lemeshow H statistic.  Figure 2 shows H statistic results 
for the logistic regression model used for the final CinC 
Challenge entry.  

Arriving at the Event 1 in-hospital mortality prediction 
(0: survival, or 1: In-hospital death) for each patient is 
more complicated than Event 2 scoring.  Inspection of the 
Sensitivity (Se) and positive predictivity (+P) terms 
reveals a tradeoff between false negative (FN) and false 
positive (FP) predictions.  As stated above, the output 
from “mnrval” is two probabilities:  1) the probability of 
a “0” outcome, and 2) the probability of a “1” outcome.  
The key to making an Event 1 in-hospital mortality 
prediction lies in deciding a threshold value at which 
either of the two probabilities will indicate a “0” or a “1” 
outcome.  Since the sum of both probabilities is 1, this is 
equivalent to deciding the outcome prediction based on a 
ratio of the two probabilities.  This work uses such a ratio 
approach to determine the outcome prediction, and 
investigate the tradeoff between Se and +P.  Figure 1 
illustrates the process, with the solid gray line showing 
the score 1 value, at various probability ratios.  As with 
Figure 2, the results presented in Figure 1 reflect the final 
configuration of the logistic regression model results for 
data set-a. 

 

4. Phase 3: apply and refine logistic 
 regression model(s) 

The regression coefficients comprise the model for the 
CinC Challenge entry.  Model implementation consists of 
incorporating regression coefficients and derived-data 
processing code into the “physionet2012.m” script.  
Separate models are used for each of Event 1 and Event 2.   

Logistic regression model refinement included non-
linear transformations for the derived variables.  This 
involved copying the original predictor matrix, applying 
transforms of interest, combining the original and 
transformed matrices, then using “stepwisefit”, “mnrfit”, 
and “mnrval” as described before.  Four transformations 
investigated a limited set on non-linear possibilities.  
Equations (8) through (11) show the four transformations. 
Also, several ranges of negative and positive fractional 
exponent transformations were investigated. 

2
originaladded YY =    (8) 

-2
originaladded YY =    (9) 

originaladded )ln(YY =    (10) 

originaladded )/1ln( YY =    (11) 

The final submission for the CinC Challenge used only 
fractional exponential transformations to augment the 
predictor matrix.  The fractional exponential policy 
produced the best set-a score 1 results, with set-a scores 
correlated with but consistently well below set-b scores 
for all entries.  Several of the non-linear transformation 
policies produced excellent score 2 results (H < 4) for set-
a data, but consistently non-competitive score 2 results 
for set-b data.  Poor comparisons between set-a and set-b 
scores leads to suspicion that the two data sets may be 
from different populations, or the 4000 sample size is too 
small.  Otherwise, intuition is that a model developed 
from a randomly drawn 4000-member sample should 
more effectively predict outcomes for another random 
4000-member sample from the same population.  With 
only ten set-b comparison opportunities available, it was 
not possible to conduct enough experiments to tailor 
models to the set-b data.  Even if this had been possible it 
was unknown if the same “bait and switch” situation 
would occur for set-c.  Ultimately unable to achieve a 
meaningful correlation between set-a and set-b scores 2, 
attempts to improve score 2 results were abandoned and 
the final submission selection was based on a policy 
producing the best score 1 and a good (but not the best 
observed) score 2.  Congratulations to those with the 
talent and insight to effectively address this situation 
without relying on luck.  Table 1 shows the entire array of 
derived variables considered, with the “X”s marking the 
derived variables used in the final model for Event 1, with 
“*”s identifying exponential transformed variables. 
 

490



 
Figure 1.  Score 1 Results For Data set-a. 

 

 
 

Figure 2.  Score 2 Results For Data set-a.
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Table 1.  Derived variables. 
 

“X” means 
variable is 
in the final 
model 

Derived Variable Short Description 
See Section 2, Eqns (1) thru (7) 

first avg min max T diff last 

Albumin    X*  X  
ALP  X   X    
ALT         
AST    *     
Bilirubin  X*     X  
BUN  X      X 
HCT         
HR    X X  X* 
K         
Lactate  X  *  *  
Mg        
MAP         
PaCO2  X X    X* 
PaO2        
pH  X    X  
Platelets       X  
RespRate  *       
Cholesterol         
Creatinine *   *    
DiasABP        
FiO2      *  
GCS     X*  X* * 
Glucose       X 
HCO3        
MechVent      X   
Na      *  
NIDiasABP         
NIMAP       X* 
NISysABP         
SaO2    *    
SysABP  X*   X*    
Temp  X   X *  
TroponinI         
TroponinT         
Urine *   X*    
WBC        X* 
Weight   (no derived variables by 

Equations (2) through (7) for 
these parameters) 

Age  X* 
Gender   
Height   
– Every derived variable table element shown was 
screened for significance by “stepwisefit”.  
 – Table elements with “X“ were basic, non-
transformed logistic regression model predictors. 
– Table elements with “*” were exponential 
transformed variables used as predictors. 

 
 

5. Excursions 

Other derived variables besides Equations (1)-(7) were 
investigated, including a SOFA-Score-based approach as 
outlined in [2].  The data was not well-suited to produce a 
consistent stream of SOFA scores for each patient data 
file, requiring many assumptions and data manipulations 
similar to those described previously to populate 
extensive zero-span regions of the predictor variable 
matrix.  In the end, this issue rendered the SOFA score 
approach actually less effective for the purposes of the 
two CinC Challenge scoring metrics.   

The idea of “predicting” patient mortality, given that 
the full ICU history for each patient is available suggests 
the following perspective.  By the time the complete data 
set is collected, the outcome is known since the data 
stream ends with a “0” or a “1” outcome.  A more 
interesting “prediction” problem may be to make the 
same “0” or “1” prediction based on a more restricted 
data situation of, for example, only the five general 
descriptors and the “first” values as described in Equation 
(1).  This excursion, including non-linear transformations 
described earlier, yielded score 1 = 0.4116, and score 2 = 
8.843.   

Finally, other analysis techniques were attempted with 
results inferior to the logistic regression approach.  Two-
group discriminant analysis using the MATLAB® 
“classify” function was not effective because of too much 
overlap between the data describing the “0” outcome 
group and the “1” outcome group, even when using a 
discriminant function that employed the prior 
probabilities associated with the set-a “survivor” and “in-
hospital-death” groupings.  Two hypothesis testing 
approaches using each of the MATLAB®  Kolmogorov-
Smirnov (KS) “kstest” and “kstest2” functions suffered 
from too little data for each parameter for each patient 
data file to test against the “survivor” or “in-hospital-
death” populations defined with the set-a data.  Logistic 
regression proved superior to all of these approaches. 
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