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Abstract 

Cardiac single-slice time-area curves (TAC) depict the 
left ventricle function at multiple time points throughout 
cardiac cycle. The character and number of observed TAC 
phases depends on several factors related to heart 
condition and experimental procedure. The aim of this 
work was to assess piecewise linear regression modelling 
(PLR) as a tool for the TAC shape analysis leading to the 
curve sectioning with estimation of the segments lengths 
and dynamics allowing the complex TAC parameterization. 

 Cardiac Magnetic Resonance images of the 
atherosclerotic and control mice obtained at rest and 
under pharmacologically induced stress condition were 
considered. TAC from each mouse was modelled by 
partitioning time into intervals and fitting using straight 
lines, where position of intervals boundaries were 
optimized numerically. The best fit model was selected 
from several candidate models (with different numbers of 
segments) according to Akaike Information Criterion. 

PLR has been validated as the promising method for 
tracing qualitative and quantitative changes in TAC shapes 
showing different paths of stress response. The method is 
time saving, gives possibly objective results, extends 
analysis protocol and allows semi-automatic assessment of 
the TAC individual systolic and diastolic phases.  

 
 

1. Introduction 

Cardiovascular problems are great part of civilization-
related diseases resulting in significant morbidity and 
mortality worldwide [1]. One of the important issues 
concerning cardiac research at the very early stage of 
pathology is the proper understanding of the observed 
functional changes in response to developing 
cardiovascular alterations.  

Cardiac Magnetic Resonance Imaging (CMR) is a 
valuable tool in the assessment of heart function, especially 
in experimental models where early and subtle or atypical 
changes may be observed. Although there are many CMR 

techniques of heart condition analysis, the assessment of 
cardiac function based on the left ventricle (LV) volume 
changes over cardiac cycle is still the most common 
method. An important extension of the method is related to 
the use of β-adrenergic stimulation during CMR 
examination which can be described as the equivalent for 
the stress test. Allowing the assessment of cardiac reserve 
it may be used as a more precise parameter but also as an 
effective survival predictor [1].  

CMR in small animals is more problematic than in 
humans. Small size of rodent heart and its rapid action 
result in restricted spatio-temporal resolution of the method 
[2-3]. Moreover, application of the bolus β-adrenergic 
stimulation in murine studies practically preclude from 
whole chamber imaging because of limited time for 
measurement after the bolus injection. In such conditions 
data is restricted to the area of the single LV cross sections 
measured over the cardiac cycle.  

For the detailed description of LV performance, a time-
volume curve or a single-slice time-area curve (TVC/TAC) 
should be analysed, however, the manual post-processing 
is subjective and time consuming. For the enhanced 
analysis of TAC/TVC computer aided techniques may be 
useful. Humans TVC shapes were previously reported to 
be analyzed by Fourier fitting [4-5] and spline smoothing 
[6-7], however these methods allow to calculate only peak 
ejection and peak filling values without any information 
about cardiac phases time-course neither filling/emptying 
profile, so still some information can be incomplete.  

The goal of the presented work was to implement 
Piecewise Linear Regression to the CMR-based TAC for 
its shape modelling and calculating standard and 
supplementary cardiac parameters and Akaike Information 
Criterion to model selection. The algorithm has been tested 
on data from experiments with a stress protocol in healthy 
and diseased mice.  

 
2. Methods and calculation 

2.1. Subjects and CMR protocol 
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Images from seven ApoE/LDLR-/- mice with advanced 
arteriosclerosis (6 months old) and five control C57BL/6J 
mice (2 months old) were taken for the PLR analysis. 
Three data sets were analysed for each mouse: at rest and 
under stress condition after dobutamine i.p. injections with 
two increasing doses (low: 0.5 mg/kg and high: 5 mg/kg).  

Each data set consisted of the series of midventricular 
short axis images evenly distributed over cardiac cycle. 
They were collected using the 4.7 MRI system consisting 
of MARAN DXR console (Resonance Instruments Ltd, 
United Kingdom) and 4.7 T magnet (Bruker, Germany) 
using prospectively ECG triggered cine gradient echo 
sequence (FLASH) with the field of view (FOV) equal to 
30x30mm2 and spatial resolution 0.24 mm per pixel [8]. 
Number of images per cardiac cycle was dependent on the 
cardiac cycle length (from 18 to 29) and was set to 
maintain temporal resolution not worse than 5.3 ms. Heart 
rates used for cardiac cycle length normalization were 
recorded independently during the imaging protocol (SA 
Instruments Inc, USA).  

CMR-based images were semi-automatically segmented 
in order to LV endocardium detection, delineation and its 
area evaluation using Aphelion software (ADCIS, France) 
[9]. TACs were generated by plotting segmented LV area 
normalized to end-diastolic area against the time after the 
R-wave normalized to the length of the cardiac cycle, so 
both coordinates were in the range between 0 and 1. 
 
2.2. TAC Modeling using PLR 

TAC shapes were modeled by applying piecewise linear 
regression (PLR) method (Figure 1).  
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Figure 1. An example of Piecewise Linear Regression 
method applied to the TAC based on segmented LV MR 
images. J1 to J8 are breakpoints, S1 to S7 are linear 
segments interpreted as: S1 – rapid ejection (ER), S2 – 
reduced ejection, S3 – IVRT, S4 – rapid inflow (FR), S5 – 

diastasis, S6 – atrial systole, S7 – IVCT. Systole time (Ts) is 
a duration of rapid and reduced ejection [12]. 
 

The PLR model [10,11,13] was obtained by piecing 
together separate segments given by the linear regression 
function Y=aiX+bi defined over the time intervals 
breakpoints (Ji):  
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where Y – normalized LV single-slice area, X – time.  
The unknown positions of segment boundaries (Ji) was 

optimized numerically using Levenberg-Marquard 
algorithm (MATLAB, MathWorks Inc, USA), the most 
frequently used to solve nonlinear data fitting problems in 
least-squares sense (by minimize mean sum of squares) 
[10]. According to breakpoints position linear intercepts bi 
and slopes ai were calculated.  

 
2.3. Model selection according to AIC 

For each dataset PLR algorithm was applied six times 
with variant number of segments. The simplest one 
consisted of three segments, whereas the consecutive, more 
complicated models were produced by increasing number 
of segments by one, up to eight segments which was one 
more than the maximum number identifiable and 
interpretable in cardiac cycle [12].  

The proper number of TAC segments was chosen using 
Akaike Information Criterion (AIC), a method for model 
selection, based on information theory, which estimates the 
relative discrepancy between the unknown true model and 
the approximating model as a measure of the Kulblack-
Leibler information loss [10, 13]. AIC value is defined by 
the equation: 

K
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where N is the number of raw data points from CMR-based 
images (at least two times greater than number of estimated 
parameters), K is the number of parameters plus one, and 
SSE is the sum of the squares of the vertical distances 
between the data points and the model.  

When N is small compared to K (as in this case) the 
corrected AIC value (AICC) is more accurate [14]: 
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Each model was compared with the next one according 
to increasing number of segments and the one with the 
smaller AICC value was selected. When addition of the 
next segment did not improve fitting quality the algorithm 
was stopped. Even when addition of next segment improve 
model fitting (smaller AICC value, but less than 2) the 
model with smaller number of parameters was selected,. 
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The compliance between the segments and corresponding 
cardiac phases was evaluated by an expert knowledge. 

 
2.4.  Data and statistical analysis 

For the LV condition description the following 
functional parameters based on the TAC were calculated: 
fractional area change (FAC=(EDA-ESA)/EDA in 
percents, where ESA and EDA indicate an end-systolic 
area and an end-diastolic area respectively), isovolumic 
relaxation time (IVRT) assigned to the length of the 
segment with relatively small changes and located after 
systolic phase, systole duration (Ts), ejection and filling 
ratios (ER, FR respectively) as regional slopes of linear fit 
at the beginning of the systole and diastole (rapid ejection 
and rapid inflow). 

ANOVA for repeated measurements were used to 
compare LV parameters before and after dobutamine 
injection (cardiac reserve assessment). For detailed 
comparison Tukey post-hoc test was applied. Comparison 
between two methods (manual and semi-automatically 
PLR) was performed using Spearman correlation analysis 
and Bland-Altman analysis. Statistical analysis was 
conducted in STATISTICA package (Stat Soft Inc., USA). 

P-values smaller than 0.05 were considered statistically 
significant. 

 
3. Results 

Shapes of basal curves for ApoE/LDLR-/- and C57BL/6J 
are roughly similar (Figure 2A). The first noticeable 
difference between groups is visible on the diastolic limb 
for the low dobutamine dose stimulation (Figure 2B): 
control group have steeper slope on the diastolic limb (FR) 
and shorter IVRT. After second injection with high 
dobutamine dose the differences in TAC shapes between 
groups are pronounced: IVRT shortened and FR became 
steeper due to more rapid inflow in control group (Figure 
2C). Quantitative analysis were performed and results are 
presented in Table1. 

For the pairs of cardiac parameters estimated by the 
algorithm and manually the Spearman`s correlation 
analysis was conducted. FACalg vs FACman: rs = 0.98 
(p<0.0001; N = 35), ERalg vs ERman: rs = 0.84 (p<0.0001), 
FRalg vs FRman: rs = 0.91 (p<0.0001), Tsalg vs. Tsman: rs = 
0.80 (p<0.0001), IVRTalg vs IVRTman: rs = 0.68 
(p<0.0001). A Bland-Altman plot of residual values of 
parameters showed no clear evidence of a systematic 

 

 
 
Figure 2. TAC shapes for ApoE/LDLR-/- and C57BL/6J mice averaged over the whole group at rest (A) and after two 
consecutive dobutamine doses (B and C). The averaged curves were built by adding individual single slice area 
values in proper cardiac phase. Whiskers indicate SD. 

 
 
Table 1 Cardiac parameters and number of linear segments calculated at rest and after low (0.5 mg/kg) and high 

(5 mg/kg) dose of dobutamine for ApoE/LDLR-/- and control (C57BL/6J) mice.  
Cardiac 

parameter 
C57BL/6J mice ( N=5) ApoE/LDLR-/-  mice (N=7) 

Basal Low dose High dose Basal Low dose High dose 
Segment no 4.2(1.1) 4.4(0.6) 4.8(0.5) 3.7(0.5) 3.9(0.7) 4.5(1.1) 

FAC [%] 68 (7) 71 (7) 77(4)* 70(7) 72(6) 82(5)** 
Ts [% RR] 33(6) 31(8) 37(6) 32(7) 28(3) 28(4) 

IVRT [% RR] 13(8) 14(8) 10(4) 12(9) 17(3) 18(4) 
ER [EDA/RR] 2.6(0.5) 2.6(0.3) 2.7(0.5) 2.5(0.5) 2.7(0.2) 3.4(0.6)** 
FR [EDA/RR] 2.6(0.6) 3.0(0.5) 3.4(0.9) 2.0(0.5) 1.9(0.5) 2.4(0.7) 

* – p<0.05 for comparison between high dose and basal, ** – p<0.05 between high dose and basal and high and low dose. 
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difference between the methods.  
 

4. Discussion and conclusion 

Presented work depicts the application of PLR modeling 
for the assessment of cardiac function in course of the 
experimental heart failure analysis. Detailed TAC analysis 
can give various markers of systolic and diastolic function, 
what is of great importance especially in models of 
diastolic or suspected diastolic dysfunction. 

The PLR method adopted for TAC modeling provides 
the TAC analysis and parameterization. In contrast to the 
attempts being used previously and based mostly on the 
curve smoothing the proposed method gives the 
opportunity of the TAC segmentation into intervals related 
to the cardiac phases. Moreover, the number of visible 
phases is assigned using AIC, a tool for the automated 
model search and comparison, what gives additional 
information, prevents the use of overly complex 
description and, additionally, leaves less decision for the 
operator making the process of the TAC analysis more 
objective. However, in case of difficulties in segments 
assessment due to ambiguous curve shape, operator 
supported decision still has to be made as well as the 
compliance between the segments in PLR and 
corresponding phases in cardiac cycle should be verified.  

PLR method applied to the results of the CMR 
measurements of the cardiac function in the murine model 
of atherosclerosis demonstrates changes in cardiac function 
in diseased mice and uncovers stress induced difference 
between healthy mice: decreased FR at low stimulation and 
prolonged IVRT at high stimulation. This can indicate a 
progressing diastolic dysfunction and, consequently, the 
early stage of cardiovascular problems which is one of the 
manifestations of atherosclerosis. 

To conclude the PLR method is more time efficient, 
provides a step towards a more objective characterization 
of heart function in cardiac MRI in animals and could be 
potentially promising tool for automatic or at least semi-
automatic tracing of qualitative and quantitative changes in 
TAC shapes. Additionally, combined with the extended 
protocol with application of the stress test, it could give 
more complex information of developing heart dysfunction 
not noticeable at rest condition. 

 
Acknowledgements 

 
This work was supported by the European Union from the 
resources of the European Regional Development Fund 
under the Innovative Economy Programme (grant 
coordinated by JCET-UJ, No POIG.01.01.02-00-069/09). 
 
References 

[1] McMurray et al. ESC Guidelines for the diagnosis and 

treatment of acute and chronic heart failure 2012: The Task 
Force for the Diagnosis and Treatment of Acute and Chronic 
Heart Failure 2012 of the European Society of Cardiology. 
Developed in collaboration with the Heart Failure 
Association of the ESC. European Heart Journal 2012. 

[2] Nahrendorf M, Hiller KH, Hu K, Ertl G, Haase A, Bauer WR. 
Cardiac magnetic resonance imaging in small animal models 
of human heart failure. Medical Image Analysis 2003; 
7(3):369-375. 

[3] Vallee JP, Ivancevic MK, Nguyen D, Morel DR, Jaconi M. 
Current status of cardiac MRI in small animals. Magnetic 
Resonance Materials in Physics Biology and Medicine 
2004;17(3-6):149-156. 

[4] Nomura Y, Inoue Y, Yokoyama I, Nakaoka T, Itoh D, 
Okuboa T, et al. Evaluation of left ventricular function with 
cardiac magnetic resonance imaging using Fourier fitting. 
Magnetic Resonance Imaging 2006;24(10):1333-1339. 

[5] Natsume T, Amano T, Takehara Y, Ichihara T, Takeda K, 
Sakuma H. Quantitative assessment of regional systolic and 
diastolic functions and temporal heterogeneity of myocardial 
contraction in patients with myocardial infarction using cine 
magnetic resonance imaging and Fourier fitting. Magnetic 
Resonance Imaging 2009; 27(10):1440-1446. 

[6] Tseng WYI, Liao TY, Wang JL. Normal systolic and diastolic 
functions of the left ventricle and left atrium by cine 
magnetic resonance imaging. Journal of Cardiovascular 
Magnetic Resonance 2002;4(4):443-457. 

[7] Zeidan Z, Erbel R, Barkhausen J, Hunold P, Bartel T, Buck T. 
Analysis of global systolic and diastolic left ventricular 
performance using volume-time curves by real-time three-
dimensional echocardiography. Journal of the American 
Society of Echocardiography 2003;16(1):29-37. 

[8] Tyrankiewicz U, Skórka T, Jabłońska M, Chłopicki S: 
Alteration in systolic and diastolic cardiac function in murine 
model of atherosclerosis (ApoE/LDLR-/- mice), Heart Failure 
Congress 2011 of European Society of Cardiology, 21-24 
May 2011, Gothenburg, Sweden, Book of Abstracts. 

[9] Kosecka S, Wojnar L, Petryniak R et al., Application of image 
analysis for quantification of cardiac function in vivo by MRI 
in the mouse model of heart failure. Inżynieria Materiałowa 
2008; 4:459-462. 

[10] Seber GAF, Wild CJ. Nonlinear Regression. Hoboken, New 
Jersey: John Wiley & Sons, Inc.; 2003. 

[11] Hand DJ, Mannila H, Smyth P. Principles of data mining. 
The Massachusetts Institute of Technology Press ; 2001. 

[12] Guyton AC, Hall JE. Textbook of Medical Physiology. 11th 
edition, Philadelphia, Pennsylvania Elsevier Inc., 2006. 

[13] Burnham KP, Anderson DR. Multimodel Inference: 
Understanding AIC and BIC in Model Selection. 
Sociological Methods & Research, 2004;33: 261-304. 

[14] Motulsky H, Christopoulos A. Fitting models to biological 
data using linear and nonlinear regression.A practical guide 
to curve fitting. San Diego CA: GraphPad Software Inc.; 
2003. 

 
Address for correspondence: 
Magdalena Jabłońska 
Institute of Nuclear Physics 
Polish Academy of Sciences 
ul. Radzikowskiego 152 
31-342 Kraków 
Magdalena.Jablonska@ifj.edu.pl 

560




