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Abstract 

Cardiovascular autonomic neuropathy (CAN) is highly 
prevalent and a serious complication in patients with 
diabetes mellitus. In this study, we investigate the effect of 
changing the degree and data length on network 
properties (transition asymmetry and network efficiency) 
to differentiate negative CAN (NCAN) subjects from 
definite CAN (DCAN). Forty-one patients with Type 2 
diabetes mellitus were included in the study: 15 patients 
had definite CAN (DCAN), whilst the remaining 26 were 
negative for CAN (NCAN), being without clinical signs 
and symptoms of CAN. Symbolic Aggregate 
approximation (SAX) was used as the discretization 
procedure to convert the heart rate variability (HRV) 
time-series signal to network. The optimal degree (m) and 
data length (n) were found to be  ݉௢௣௧ ൌ 270and  
݊௢௣௧ ൌ 200 respectively with leave-one-out accuracy of 
85.37% using transition asymmetry (A(G)) and network 
efficiency (EF) indexes. Both, A(G) and EF indexes are 
found to be a potential parameter for detecting CAN in 
diabetes.  

1. Introduction

Cardiac autonomic neuropath (CAN) is a serious 
clinical complication of diabetes. CAN is found in one 
third of type 2 diabetes patient and causes gradual 
damage to the autonomic nerve fibers that innervate the 
heart and blood vessels, resulting in abnormalities in heart 
rate control and vascular dynamics [1]. The noninvasive 
Ewing test battery [2] is the gold standard for screening 
CAN at present. The Ewing test uses cardiovascular 
reflex responses and depends on the compliance of the 
participant. Therefore, alternative approach independent 
of patient’s active participation is still on quest.  

A change in heart rate variability (HRV) has been 
shown to be one of the early signs of CAN [3], the most 
common method used for CAN diagnosis is HRV 
analysis. However, only a few studies have applied new 

parameters based on nonlinear dynamics theory to HRV 
analysis in diabetic mellitus (DM) patients [4-6]. 

In the last decade, time-series network translation has 
been developed to understand the correlation structure 
and dynamical properties of the time-series signal [7-8]. 
This transformation also avails the tools and knowledge 
of graphs and networks theory to extract information 
from time-series data. Since HRV is a time series signal 
and complexity and/or dynamical information of the HRV 
signal has shown an association with various 
physiological and pathological conditions, the particular 
interest of this study is the application of complex 
network theory based HRV analysis in detecting CAN in 
diabetes.  

Mapping of time-series signal into network is a 
challenging activity. Several mapping approaches capable 
of differentiate various time-series properties such as 
periodicity, fractal or chaotic dynamical behaviours are 
defined based on autocorrelation matrix [8-9], relative 
magnitude between the TS points [7], distance between 
phase space points [10] etc. Another simple and linear 
discretization approach based on symbolic aggregate 
approximation (SAX) method [11] was used by Tejara et 
al. for characterizing the complexity of HRV time-series 
signal in the ageing process of healthy subjects [12] and 
multi-scale transition asymmetry analysis of HRV signal 
to differentiate between normal and preeclamptic 
pregnancies [13]. One important parameter of this 
mapping procedure is the number of nodes (degree) ݉. It 
is obvious that very small value of ݉ leads to small sized 
network that is computationally efficient, however the 
subtle fluctuation (very detailed information) of the signal 
could be lost. In contrast, larger ݉ could improve the 
sensitivity towards subtle changes of the signal with 
larger computational cost. The maximum degree ݉௠௔௫ of 
any network can be defined as: ݉௠௔௫ ൌ ሺܴܴ௠௔௫ڿ െ
ܴܴ௠௜௡ሻ/|∆ܴܴ௠௜௡|ۀ, where ∆ܴܴ௠௜௡is the minimum 
difference between any two RR intervals in the HRV 
series. If the degree of the network is selected as ݉ ൐
݉௠௔௫then it confirms capturing of subtle change in the 
signal. However, this increases the computational cost 
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and does not provide any information about the minimum 
data length necessary for reliable feature extraction. 

 In this study, a detailed methodology has been shown 
for selecting the degree (number of nodes) of the network 
and minimum data length (number of RR intervals to 
better differentiate definite CAN (DCAN) subjects from 
negative CAN (NCAN) subjects using transition 
asymmetry and network efficiency indexes.  

2. Methods and data

2.1. Linear discretization method for 
mapping HRV signal to network  

The linear discretization procedure used for converting 
time-series to a network-type process is similar to the 
Symbolic Aggregate Approximation (SAX) method [11]. 
The RR time-series extracted from the electrocardiogram 
(ECG) signal is considered as a numeric sequence 
ܴܴ ൌ ሼݎݎଵ, ,ଶݎݎ ⋯,ଷݎݎ ,  ேሽ. The sequence is divided intoݎݎ
݉ non-overlapping intervals of size ∆ܴܴ ൌ ሺݎݎ௠௔௫ െ
 represent the minimal	௠௔௫ݎݎ ௠௜௡ andݎݎ ௠௜௡ሻ/݉, whereݎݎ
and maximal values of the sequence. The original ܴܴ 
sequence is transformed in to a sequence ܵ of ݉ 

Figure 1. Example representation of the discretization 
process of the original ܴܴ time-series. ܴܴ ൌ
ሼݎݎଵ, ,ଶݎݎ ⋯,ଷݎݎ , ݉ ଵ଴ሽ is divided intoݎݎ ൌ 7 regular 
intervals of size ∆ܴܴ. Each element of ܴܴ is replaced by 
the average value of the interval and therefore ܴܴ is 
transformed into a new sequence ܵ of equal length but 
with only seven possible values. 

number of possible values that have same length as ܴܴ 
(Fig 1). Transformation ܴܴ → ܵ is performed as follows: 
௜ݎݎ	:݅	∀ ∈ 	 ܵ௞ 	 : ሺ݇ െ 1ሻ∆ܴܴ ൑ ௜ݎݎ ൏ ݇∆ܴܴ	

ܵ௞ ൌ ܴܴ௠௜௡ ൅
1
2
ሺ2݇ െ 1ሻ∆ܴܴ 

(1) 

where, k ൌ 1, 2,⋯ ,m 
Therefore all values of ܴܴ௜is replaced by the ݉ 

interval average values. This ݉ states are then considered 
as network nodes ܸ ൌ ሼݒଵ, ,ଶݒ ⋯,ଷݒ ,  ேሽ. Any two ofݒ
these nodes ݒ௜ and ݒ௝ are connected iff ∃	݆: ݆ ൌ ݅ ൅ 1 in 
the sequence ܵ.  

2.2. Transition asymmetry (࡭ሺࡳሻሻ and 
Network efficiency (ࡲࡱ) indexes 

Simply, a transition ௜ܶ௝ indicates that the nodes ݒ௜ and 
 ௝ of network G are connected to each other. Theݒ
transition frequency ்ܨ೔ೕ(total number of transitions 

between any two nodes) is used to generate the complete 
transition frequency matrix ܨሺ݉ ൈ݉ሻ of network	ܩ. One 
interesting property of a transition map or transition 
frequency matrix is its symmetry. If the transition map is 
symmetrical then ்ܨ೔ೕ ൌ  ೕ೔for all ݅ and ݆. In contrast, if்ܨ

the network has some preferential nodes i.e., states with 
higher transitional probability then the density around 
these nodes increases and the network becomes 
asymmetric. In this study, we have used the transition 
asymmetry index ܣሺܩሻ, which is calculated as follows 
[13]:  

Step 1: Define binary transition symmetry map 

∀ ݅, ݆: ߬௜௝ ൌ
1 ݂݅ ቚ்ܨ೔ೕ െ ೕ೔ቚ்ܨ ൐ 0

0 ݁ݏ݅ݓݎ݄݁ݐܱ
 (2) 

Step 2: Calculate transition asymmetry index ܣሺܩሻ 
from binary transition symmetry map ߬: 

ሻܩሺܣ ൌ
2

݉ሺ݉ െ 1ሻ
෍ ෍ ߬௜௝

௠

௝ୀ௜ାଵ

௠ିଵ

௜ୀଵ

 (3) 

Network efficiency (ܨܧ) is a network centrality index 
and is related to the compactness of the network and 
degree of connectivity. Higher values of ܨܧ represent 
strongly connected networks, whereas a smaller value 
represents a loosely connected network. The network 
efficiency ܨܧ is defined as: 

ܨܧ ൌ෍ ෍
1

݉ሺ݉ െ 1ሻ݀௜௝

௠

௝ୀଵ,௝ஷ௜

௠

௜ୀଵ

 (4)

where, ݀௜௝ is the shortest distance between node ݒ௜ and 
 ௝ of the network. For simplicity, the loops in theݒ
networks are ignored and the shortest distance 
corresponds to topological one i.e., no weight was 
assigned to edges of the network. 

2.3. ROC area analysis 

Receiver-operating curve (ROC) analysis was used to 
determine the accuracy of classification  [14], with the 
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area under the curve for each feature represented by the 
ROC area. An ROC area value of 0.5 indicates that the 
distributions of the features are similar in the two groups 
(NCAN & DCAN) with no discriminatory power. 
Conversely, a ROC area value of 1.0 would mean that the 
distribution of the features of the two groups do not 
overlap at all. The area under the ROC curve was 
approximated numerically using the trapezoidal rules [14] 
where a larger ROC area represents better discriminatory 
performance. 

2.4. Degree and data length analysis 

The degree ݉ of the network (ܩ) was varied from 2 to 
400 and features (ܣሺܩሻ and  ܨܧ) of all subjects of DCAN 
and NCAN groups were calculated for each ݉. The 
optimal degree was selected as the minimum degree for 
which the maximum ROC area was found i.e., ݉௢௣௧ ൌ

min	ቀ	
arg݉ܽݔ

݉ ቁ. After selection of the optimalܽ݁ݎܽ	ܥܱܴ

degree (݉௢௣௧), the minimum data length was selected by 
varying data length (number of beats) from 100 to 800. 
For each data length, both ܣሺܩሻ and ܨܧ were calculated 
for all subjects of subjects and the classification accuracy 
was calculated as the ROC area between DCAN and 
NCAN groups. Finally, the minimum data length was 

selected as ݊௢௣௧ ൌ min	ቀ	
arg݉ܽݔ

݊ ቁ . Afterܽ݁ݎܽ	ܥܱܴ

selection of optimal degree and data length, features 
 were calculated and leave-one-out (ܨܧ ሻ andܩሺܣ)
accuracy was determined using linear discriminant (LD) 
classifier for each feature.  

2.5. Data 

Total 41 patients with Type 2 diabetes mellitus were 
included in the study: 15 patients had definite CAN 
(DCAN), whilst the remaining 26 were negative for CAN 
(NCAN), being without clinical signs and symptoms of 
CAN. The detail exclusion criteria, fiducial point (R 
wave) detection procedure, removal of ectopic beat and 
procedure for determining DCAN can be found in [20]. In 
this study, we have used the first 800 RR intervals of each 
subject from  both groups for feature extraction. 

3. Results and discussion

The ROC area (classification accuracy) between 
NCAN and DCAN groups for tansition asymmetry 
(A(G)) and network efficiency (EF) features with varying 
degree of networks (m) is shown in Figure 1. The ROC 
area is low with higher fluctuation for ݉ ൏ 70 and for 
70 ൑ ݉ ൑ 270 ROC shows an increasing AUC trend 
with increasing ݉ value. The fluctuation in the AUC 
values indicates higher variation in feature values, which 
indicates larger and rapid changes in network topology 

with increasing ݉ at lower range (2 ൏ ݉ ൏ 70) of the 
network. In contrast, the increasing trend in ROC area for 
70 ൒ ݉ ൒ 270 may indicate toplogical changes , which 
include subtle changes of the signal to improve capturing 
dynamics of RR interval signal. The ROC area remains 
constant for ݉ ൐ 270, which indicates that further 
increasing of degree of the network does not affect the 
topology of the network. The optimal degree, ݉௢௣௧ ൌ
270 was found from Figure 2 and used in data length 
analysis.  

Figure 2. ROC area between NCAN and DCAN groups 
with varying degree of network 2 ൑ ݉ ൑ 400. Degree of 
network (݉) is shown in log scale. All features are 
calculated for data length ݊ ൌ 800. 

Table 1. Transition asymmetry and network efficiency 
indexes for NCAN and DCAN subjects.  

Network 
Properties 

NCAN 
Mean ± SD 

DCAN 
Mean ± SD 

Acc 
(%) 

 ሻ*  4.56E-3 ± 5.08E-4 3.26E-3 ± 7.68E-4 85.37ܩሺܣ
 2.01E-2 ± 5.51E-3 9.86E-3 ± 3.70E-3 85.37 *ܨܧ

* index values are significantly (p<0.01) different between
groups using Mann-Whitney U-test. 

With optimal degree of the network, the data length ݊ 
was varied from 100 to 800 RR intervals to determine the 
optimal data length ݊௢௣௧. The ROC area obtained with 
varying data length is shown in Figure 3. The ROC area 
for both features remains above 0.90 for data length 
݊ ൐ൌ 200 with small fluctuations. Moreover, maximum 
ROC area of 0.941 and 0.936 were found for ܣሺܩሻ and 
respectively for data length ݊௢௣௧ ܨܧ ൌ 200. Therefore, 
the optimal degree and data length selected for 
differentiating DCAN from NCAN subjects are 
determined as ݉௢௣௧ ൌ 270 and ݊௢௣௧ ൌ 200. These 
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parameters were used to generate the final network 
topology to extract features for classifying two groups. 

Figure 3. ROC area between NCAN and DCAN groups 
with varying data length 100 ൏ൌ ݊ ൏ൌ 800. All features 
are calculated for optimal degree ݉௢௣௧ ൌ 270.  

The Mean ± SD values of transition asymmetry (ܣሺܩሻ) 
and network efficiency (ܨܧ) indexes for NCAN and 
DCAN subjects for optimal degree and data length is 
shown in Table 1. Acc represent the leave-one-out 
classifying accuracy using linear discriminant (LD) 
classifier. Transition asymmetry of NCAN group was 
higher than DCAN group, which was linked with the 
higher variations in dynamics of HRV signal in NCAN 
groups compared to DCAN. Similarly, the network 
efficiency is also higher in NCAN group, which means 
that the network topology of NCAN group is strongly 
connected compared to DCAN group. Moreover, both 
A(G) and EF were found equally strong in classifying 
NCAN and DCAN group with an accuracy 85.37%. 

4. Conclusion

In this study, the effect of degree and data length on 
network properties was analysed for cardiac autonomic 
neuropathy detection in diabetes using heart rate 
variability signal. A systematic approach has been 
presented for selecting optimal degree and data length for 
using complex network based HRV analysis. Transition 
asymmetry and network efficiency indexes are used to 
analyse the network and both are found potential feature 
for classifying NCAN and DCAN subjects using short 
length HRV signal. In future, it would be interesting to 
look at impact of degree and data length on other network 
properties as well as in different pathological conditions.  
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