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Abstract 

The fetal ECG (fECG) is one of the most valuable tools 
for monitoring the health of the fetus throughout 
pregnancy. However, its clinical use has been limited by 
the difficulty in analysing such non-invasive fECG 
recordings. 

The aim of this study was to develop a robust 
algorithm for the analysis of 4-channel abdominal fECG 
recordings and test its performance in the Computing in 
Cardiology Physionet Challenge 2013. 

Signals were pre-processed by a combination of 
frequency filtering and wavelet de-noising. Adaptive 
cancellation of the maternal ECG (mECG) was 
performed using maternal QRS time markers obtained 
from the principal component containing the largest 
mECG. Following further wavelet de-noising of the 
residuals, the fetal QRS time markers were computed with 
a local peak detection algorithm from the first principal 
component. The derived fetal HR (event 4) and fetal RR 
(event 5) time series were compared to the reference 
values obtained from a scalp electrode signal. 

This algorithm scored 223.23 for Challenge event 4 
and 19.34 for Challenge event 5, outperforming the 
sample algorithm. 

1. Introduction

The clinical value of fetal monitoring is widely 
acknowledged [1]. Current state-of-the-art assessment of 
the fetal heart function is mainly based on the use of an 
echo probe for monitoring of the fetal heart rate (fHR). 
This is commonly used in clinical practice along with a 
second probe, a pressure transducer, (Figure 1) intended 
for the monitoring of uterine contractions. The 
combination of these two devices is called a 
cardiotocograph (CTG) [2]. This technology is expensive, 
needs an expert nurse for the most appropriate placement 
of the probe and is extremely sensitive to maternal or 
fetal movements. 

Figure 1.  Pressure transducer (upper belt) and echo probe 
(lower belt) for standard CTG clinical monitoring. In the 
future this system could be replaced by abdominal 
electrical recordings, for example using four electrodes 
placed around the navel as illustrated. 

Another approach to monitoring involves using an 
electrode placed on the scalp of the fetus [3, 4]. This 
technique provides valuable information as it collects the 
fetal ECG (fECG) signal from which fHR and other 
clinical parameters can be derived. However, it can only 
be used during labour after rupture of the membranes and 
it is therefore highly invasive. 

Motivated by improving diagnostic capabilities and 
maternal and fetal care, there is growing interest in 
developing alternative methods of monitoring [5]. 
Abdominal fECG recordings are non-invasive and 
facilitate continuous monitoring without excessive 
discomfort for the mother and fetus. Over and above fHR 
monitoring provided by current CTG technology, fECG 
offers the prospect of additional clinical parameters such 
as fetal QT (fQT) time interval. A recent study 
demonstrated the reliability of cardiac parameters 
obtained from abdominal recordings and their excellent 
agreement with values obtained from a scalp electrode 
signal [6]. However, the data acquisition and signal 
processing challenges of abdominal fECG are significant. 
In particular the signals are contaminated by noise from 
movement of the mother and fetus, mains power line 
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interference, and other physiological components such as 
maternal ECG and maternal muscular activity [7].  

One of the most commonly used techniques for the 
extraction of the fECG from maternal abdominal 
recordings is Independent Component Analysis (ICA) [8]. 
Different algorithms have been proposed to implement 
ICA, including JADE and AMUSE. However, ICA by 
itself has practical limitations due to the significant noise 
affecting these signals, and the small amplitude of the 
fECG as compared to other physiological sources. In 
order to overcome such limitations, ICA has been used in 
conjunction with wavelet decomposition [9]; or as a 
component of a 2-stage Blind Adaptive Filtering 
approach [10]. 

An alternative approach for separating the different 
components of these signals is represented by Principal 
Component Analysis (PCA). PCA is based on obtaining 
statistically uncorrelated components, which do not 
necessarily represent independent physiological sources. 
This method was used, for example, in the algorithm 
developed by Martens et al [11]. 

The aim of this study was to use state-of-the-art signal 
processing techniques for the development of a new and 
robust algorithm for the analysis of 4-channel abdominal 
fECG recordings, and to test its performance in the 
Computing in Cardiology Physionet Challenge 2013 [12]. 

 
2. Methods 

2.1. Dataset 

Data for the Challenge consisted of a collection of 1-
min 4-channel abdominal recordings (aECG) made 
available through the Physionet webpage [13]. Gold 
standard (reference) fECG R-peaks (fR-peaks) time series 
was expertly annotated from a scalp fetal ECG recorded 
simultaneously with an aECG. 

The algorithm was developed using a training set 
(Challenge Set-A) of 75 recordings for which the 
reference fR-peaks were provided. The algorithm was 
tested on a test set (Challenge Set-B) of 100 recordings 
for which the reference fR-peaks were hidden. 

 
2.2. Fetal ECG analysis 

The proposed algorithm for the detection of the fR-
peaks consisted of four steps (as illustrated in Figure 2): 
step 1, pre-processing of the aECG signals for noise 
reduction; step 2, detection of the maternal ECG (mECG) 
R-peaks (mR-peaks); step 3, cancellation of the mECG; 
step 4, detection of the fR-peaks. 

Step 1 consisted of three sub-steps. Step 1.1 applied a 
3-100 Hz Butterworth band-pass filter to attenuate low- 
and   high-frequency  noise,   mainly  due  to  movement 

 
Figure 2.  Diagram describing the algorithm. 

 
artefacts, respiration, and electrical noise (aECG’). Step 
1.2 applied a notch filter to attenuate the coupling with 
the mains (aECG’’). Step 1.3 used a wavelet analysis 
based method to cancel large-amplitude noise (filtECG). 

Step 2 consisted of 4 sub-steps. Step 2.1 applied a 3-35 
Hz band-pass filter to select the main frequency band of 
the maternal QRS (mQRS) complex (filtECG’). Step 2.2 
computed the principal components of filtECG’ (mPC) 
and step 2.3 selected the best one (mPCn) to use for 
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subsequent mR-peaks detection. mPCn was chosen as the 
principal component with the largest mQRS complexes as 
compared to a baseline level which was defined as the 
root mean square of the signal. In order to account for 
baseline noise, this method was applied to a smoothed 
version of the PC obtained from the correlation between 
the original PC and a 100-ms triangular wave 
representing an approximated template of the QRS. 
Further analysis also corrected for possible spikes 
resembling a triangular wave which would compromise 
the correct selection of the optimal PC. Step 2.4 detected 
the mR-peaks from mPCn using an algorithm based on 
enhancing the maternal QRS complexes and applying a 
threshold based on the root mean square of the signal. 

Step 3 consisted of 2 sub-steps. In step 3.1, the mR-
peaks time series was used to provide reference time 
points to calculate an mECG template (mECGt) for each 
of the 4 channels of filtECG. Each maternal ECG cycle 
was considered to be contained in a window centred on 
the mR-peak and including 30% of the previous and of 
the following RR time interval. Step 3.2 performed an 
adaptive cancellation of the mECG by aligning the 
template to each mQRS complex, scaling the template 
both for width and amplitude, and finally subtracting the 
template from the signal. This was done separately for 
each of the 4 channels of filtECG and repeated for 
windows of 10 heart beats, in order to account for the 
time variability of the shape of the maternal ECG. The 
signal obtained after cancellation of the maternal ECG is 
the actual fetal ECG (fECG) signal. 

Step 4 consisted of 3 sub-steps. Step 4.1 performed 
wavelet de-noising to reduce noise caused by non-optimal 
mECG cancellation (fECG’). Step 4.2 computed the 
principal components (fPC) of fECG’, and step 4.3 
detected the fR-peaks from the first fPC (fPC1) using a 
local peak detection algorithm. 

 
2.3. Scoring 

The fR-peaks time series was subsequently used in the 
scoring algorithm (provided by the Challenge organisers) 
to obtain a fetal RR (fRR) time series. This was also 
processed further to derive an fHR time series by using an 
Integral Pulse Frequency Modulation (IPFM)-based 
method over a 6-second window [14]. 

The fHR obtained from the reference was compared to 
the one computed by this algorithm for Challenge event 
4. The scoring for this event was based on the mean 
square error between the two time series. 

The reference fRR was compared to the one computed 
by this algorithm for Challenge event 5. The scoring for 
this event was done similarly to that specified in 
AAMI/ANSI 1998 [15]. 

The scores obtained for both events 4 and 5 were 
compared to the ones given by a sample algorithm [11] 
provided by the Challenge organisers. 

3. Results 

On test Set-B, the algorithm scored 223.23 for event 4 
and 19.34 for event 5, performing respectively 15 and 5 
times better than the sample algorithm. These results were 
better than those obtained on training Set-A (Table 1). 
 
Table 1.  Performance of the proposed algorithm in 
comparison to the sample one. 
  Sample algorithm This algorithm 

fHR 
Set-A 2910.90 512.82 
Set-B 3258.56 223.23 

fRR 
Set-A 106.65 27.63 
Set-B 102.75 19.34 

 
4. Discussion 

This study has described an algorithm for robust 
estimation of fECG HR and RR which outperformed the 
sample algorithm. This method used a combination of 
frequency filtering and wavelet de-noising for the pre-
processing; adaptive cancellation of the mECG; PCA for 
isolating the best component for maternal and fetal R-
peaks detection. 

The algorithm performed well with good quality 
signals and also with noisy signals (Figure 3a and 3b). In 
the case shown in Figure 3b, the large-amplitude noise 
probably also corrupted the scalp signal as no reference 
points were provided for the period during which the 
noise appeared. However, this algorithm was capable of 
recovering a significant proportion of this noisy time 
interval, enhancing what are likely to be fECG R-peaks 
hidden in the noise.  

On the other hand, the algorithm performance was 
poor in the case of non-optimal maternal ECG 
cancellation (Figure 3c). There were three main causes:  

 
1) The maternal ECG complex was not fully 

contained in the ± 30% window. This happened, 
for example, when the mother had a long PQ 
and/or QT time interval. 

2) Some mR-peaks were not detected. 
3) Noise spikes were identified as mR-peaks. 

 
In order to compensate for problem 1, the algorithm 

could select the time interval for computation of the 
mECG template adaptively for each subject as the time 
between the onset of the P-wave and the end of the T-
wave. To tackle problems 2 and 3, the algorithm could 
include adaptive thresholds and methods for the 
assessment of missed and false mR-peaks. 

Future improvements should also include a further step 
in the pre-processing stage to select only channels with 
good quality signals for subsequent analysis [16]. 
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Figure 3. Example of good signal and good algorithm 
performance (a); noisy signal and good algorithm 
performance (b); good signal but with poor algorithm 
performance (c). Red dots are the reference fR-peaks; 
black circles are the ones computed by this algorithm. 
 
5. Conclusion 

This study has presented an algorithm for the analysis of 
non-invasive fECG recordings which outperformed the 
sample algorithm. Further improvements are possible to 
enhance its performance even more. 
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