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Abstract 

Noninvasive foetal heart rate (fHR) monitoring is 
important in detecting foetal distress and morbidity. In 
spite of the improvement achieved in recent years, the 
accuracy of non-invasive fHR monitors is not 
satisfactory. In this study a new method is presented with 
the goal of improving the accuracy of foetal heart beat 
detection from abdominal recordings of maternal ECG. 

A dataset of 75 four-channel abdominal ECG 
recordings (SetA) provided by Physionet Challenge 2013 
was used for training.   

Maternal QRSs were detected and subtracted from 
notch-filtered (50 Hz) and high-pass filtered (4 Hz) 
abdominal ECGs. The residual ECG signal was further 
processed (1st derivative squared and low-pass filtered 
by moving-average). On the resulting signals, local peaks 
were searched using an expectation-weighted estimate of 
the “next” fiducial point (foetal QRS (fQRS)) based on a 
Gaussian distribution G(μ,σ) with μ indicating the most 
probable time distance of the “next” fiducial point. A 
grid search was used to determine (μ,σ) minimizing the 
standard deviation of the resulting estimated fQRS time 
series for each recording. The fQRS time series were 
submitted to Physionet Challenge 2013 Events 4 and 5.    

In Event 4  (published set of 100 recordings, SetB), a 
test fHR time series was built by Physionet’s Scoring 
System from fQRS annotations and matched to the 
reference. Scores were based on test vs. reference 
mismatches (lower scores indicate better performance). 
In Event 5 (also using SetB), the RR time series replaced 
fHR. 

According to Phase 1 official scores (14 June 2013) 
our algorithm scored 135.18 (7.11) in Event 4 (Event 5), 
corresponding to the 10th (9th) position in the ranking. 
The reference algorithm provided by Physionet scored 
3258.56 (102.75). The proposed method substantially 
improved the foetal heart beat detection accuracy with 
respect to the reference algorithm. 

1. Introduction

Vigorous uterine contractions such as those occurring 
during labor may severely reduce the maternal blood flow 
to the placenta, resulting in an intermittent decrease of 
oxygen supply to the fetus [1]. In some cases the foetal 
metabolic reserve is inadequate to compensate for these 
transient phenomena, resulting in foetal distress. 

Noninvasive measurement techniques to detect foetal 
distress have received great attention since the early 
studies in the late 19th century [2]. To this end, 
monitoring foetal heart rate (fHR) has proven crucial, as 
specific conditions such as bradycardia, rapid fHR 
acceleration-decelerations, and reduced fHR variability, 
have been shown to be associated with foetal distress [2, 
3].  

The most accurate method for measuring fHR is by 
placing an electrode on the foetal scalp. However, this 
method is only viable during labor, and its associated risk 
and cost limit the current use in clinical practice [4]. 

To overcome these limitations, noninvasive foetal 
ECG monitoring (fECG) –which only makes use of 
surface electrodes placed on the mother’s abdomen– has 
been studied extensively in recent years. fECG can be 
monitored from the maternal abdomen during the second 
half of gestation (usually not earlier than the 18th week 
[4]).   

However, this method suffers poor signal to noise ratio 
as fECG has lower amplitude than the mother’s, by which 
it may be obscured. Moreover, fECG is contaminated by 
foetal brain and muscular electrical activity, as well as 
motion artifact [4]. All this poses serious challenges to 
foetal QRS (fQRS) detection algorithms. 

Several automatic methods have been proposed for 
foetal R-wave detection, mainly based on adaptive 
filtering (either training the filter to remove the maternal 
ECG or directly extract the foetal R-wave) or signal 
decomposition (wavelet decomposition, blind source 
separation), or a combination of the two [4]. 

Adaptive filtering methods suffer the limitation of 
needing a reference maternal ECG signal with similar 
morphology to the contaminating signal. This is difficult 
to achieve because the morphology of the maternal ECG 
contaminants is highly dependent on the position of the 
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electrodes. To this end, blind source separation methods 
have shown superior ability in fECG extraction compared 
to adaptive filtering [5]. 

However, blind source separation methods make the 
implicit assumption of stationarity and source mixture 
linearity, which hardly ever holds true due to foetal and 
maternal motion. [4]. 

Nonlinear methods have also been proposed, based on 
a state-space representation of the noisy signal and its 
delayed version [6]. The state-space trajectory is 
smoothened by principal component analysis, then re-
transformed into the time-domain representation. The 
choice of the time lag is, however, empirical. 

In this study a new method for multi-channel fQRS is 
presented based on the combination of source 
cancellation with expectation-weighted estimation of 
fQRS. 

This work was carried out to take part in Physionet 
Challenge 2013 [7]. 

 
2. Methods 

2.1. Data 

Three datasets of 4-channel abdominal maternal ECG 
recordings of 1 minute duration were used in the 
Challenge, namely a training set (SetA) consisting of 75 
recordings, a publicly available test set (SetB) of 100 
published recordings, and an unpublished test set (SetC) 
also consisting of 100 recordings. The maternal ECG 
signals were digitized at FS = 1000 samples/s. The raw 
data for each recording were provided along with the time 
vector (time-stamp series of the ECG samples).   

 
2.2. Physionet Challenge events and 
scoring criteria 

For Events 4 and 5, SetB was used for testing. In Event 
4 a test fHR time series was built by Physionet’s Scoring 
System from fQRS annotations and matched to the 
reference. Scores were based on test vs. reference 
mismatches, with lower scores indicating better 
performance. In Event 5 the RR time series replaced fHR. 
To participate in Events 4 and 5 the annotated fQRS files 
were required. 

 
2.3. Physionet Challenge sample method 

In addition to the raw ECG data, the Organizers 
disclosed the source code of a sample method (PHYS-
SM) for the extraction of fQRS.  

 

2.4. Signal processing 

The raw ECG data were preliminarily scanned for 
missing values using the reference time vector. If any 
were found, values were imputed by ‘prolonging’ the last 
known data-point (zero if first sample).  

The signals were then notch filtered (50 Hz) and high-
pas filtered (Butterworth 2nd order, 3 dB cut-off Fc = 4 
Hz) by zero-phase filtering. Further processing was 
divided into three sequential stages: I) maternal QRS 
detection, II) maternal QRS subtraction, III) foetal QRS 
detection 

 
I) Maternal QRS detection. The maternal QRS 

complexes were detected by a modified Pan-Tompkins 
[8] algorithm, considering all the channels. The ECG 
signals were band-pass filtered (zero-phase, Butterworth 
4th order, 3 dB pass-band: 8–25 Hz). The first derivative 
of the filtered signal was further filtered by moving 
average (zero-phase, length=33) to obtain the smoothed 
signal Sk (k=1,…,4). A new signal S was constructed: 
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where std indicates the standard deviation. Dominant 
peaks of S were identified in a running window (W=2 s) 
as those with amplitude greater than 50% of the 
maximum amplitude in W. 

The resulting time series of dominant peaks was 
defined as the maternal QRS series. For each QRS 
fiducial point, a fixed window WQRS of ±50 ms was 
defined. The fiducial point’s position was fine-tuned 
within WQRS by cross-correlation of different QRS 
complexes. This was done for each channel individually. 

 
II) Maternal QRS subtraction. For each QRS complex, 

the 10 best-matching QRS complexes from the same 
channel were collected to create a median template (fixed 
window of ±80 ms surrounding the fiducial point). The 
template QRS was then subtracted from the abdominal 
ECG to obtain the foetal signal (residual signal (rECG)). 

 
III) Foetal QRS detection. For each channel 

individually, the first derivative of rECG was filtered by a 
moving average filter (zero-phase, length = 49) to obtain 
a smoothed signal Γk (k=1,…,4). If any peaks were found 
in Γk in the first 600 ms, the dominant peak was retained 
as the first fQRS data-point, otherwise the first peak was 
considered, regardless of the time of occurrence. It is 
worth noting, that a learning period of 3 seconds was
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Figure 1. Example of intermediate output of signal processing cascade (data from 1st record of training set, SetA). 
Abdominal ECG Channel 1 (top panel), residual ECG after maternal QRS subtraction (central panel), and Γk (k=1) 
(bottom panel). An arbitrary window of 5 seconds is shown, with maternal QRS (+), detected fQRS (black triangle) and 
officially annotated fQRS (white triangles). 
 

 
Figure 2. Abdominal ECG Channel 1 for the first three records (top to bottom panels) of the training set (SetA). An 
arbitrary window of 5 seconds is shown, with maternal QRS (+), detected fQRS (black triangle) and officially annotated 
fQRS (white triangles). 
 
allowed by the scoring process. 

Subsequent fQRS complexes were identified by 
weighting Γk by a Gaussian distribution Gμ,σ(t) with 
expected value μ and standard deviation σ.  

Assuming Tj was the fiducial point of the jth fQRS 

complex, Tj+1 was estimated at the time-stamp of the 
dominant peak of Γk weighted by Gμ,σ(t) in the interval 
[Tj, Tj + ΔT], with ΔT = 2 s. By construction, the largest 
weight coefficient was located at a distance μ of Tj. In 
other words, Gμ,σ(t) indicated the weight (probability) of 
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the ‘next’ fiducial point occurring at distance t of the 
current one. Under this perspective, μ  represented the 
most probable distance between consecutive QRS 
complexes. 

The parameters μ and σ were empirically estimated by 
a grid search (μ: [350 ms, 480 ms] with step 10 ms; σ: [10 
ms, 50 ms] with step 5 ms) with the goal of minimizing 
the standard deviation of RR-intervals of the estimated 
fQRS time series. 

The range for μ was defined taking into account that 
the fHR after the 20th week of gestation is generally 
between 120 and 160 beats/minute [4].  

The fQRS time series obtained from the channel k 
(k=1,…,4) with the lowest standard deviation of RR-
intervals was retained and used to enter Physionet 
Challenge Events 4 and 5.  

 
3. Results 

Only one entry was submitted, during Phase 1. No 
entries were submitted to participate in the subsequent 
phases (2 and 3). For this reason, any changes made by 
the Organizers to the scoring algorithm during or after 
phase 2 are not considered in this work. Table 1 
summarizes the scores obtained, and those of the 
reference algorithm (PHY-SM). Lower values of the 
score indicate better performance. 

Based on the official scores released by the Organizers 
after the closing of Phase 1 (14 June 2013) our method 
scored 10th in Event 4 and 9th in Event 5.   

 
Table 1. Physionet Challege 2013 Phase 1 official score(†)  
Method Event 4 Event 5 
PHYS-SM 3258.56 102.75 
This work 135.18 7.11 
(†) released 14 June 2013. 

 
Figure 1 illustrates an example of the intermediate 

output of the signal processing cascade. In Figure 2 the 
abdominal ECG of the first three records of the training 
set (SetA) is shown with annotations. 
 
4. Discussion 

In this study, a novel method for fQRS detection was 
presented based on simple template-based maternal QRS 
cancellation and expectation-weighted estimation of 
fQRS fiducial points. To improve immunity to noise 
(such as motion or electromyographic artifacts), 
information from all the available abdominal signals was 
exploited.  

In its simple logic, this method does not rely on prior 
morphological information (model) of either the maternal 
or the foetal QRS. It is also worth noting that the 
expectation weighting parameters μ and σ are estimated 

based on a priori criteria. They are not obtained from 
maximizing any performance score on the training 
dataset. On the other hand, a limitation of this method is 
that it relies on the assumption of a ‘fairly’ stable foetal 
heart beat pattern. In particularly severe cases of foetal 
hypoxic stress, this may not be the case, especially in the 
presence of large variability of consecutive RR-intervals 
(i.e. rapid fHR deceleration or acceleration) [2,3]. 
Replication on a larger dataset –also including different 
abdominal electrodes placement– is required to further 
validate the proposed method. 
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