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Abstract

Spatial heterogeneity of ventricular repolarization
(SHVR) is related to the development of arrhythmias. To
assess SHVR, we introduced the V-index, a metric which
needs computation of the Dominant T-Wave (DTW) and its
derivatives. Theoretically, the larger the number of deriva-
tives, the better the adherence to the modelled T-wave.
In practice, only the first derivative is included, as the
numerical computation of higher derivatives is corrupted
by computation noise. Here, we introduce a parametric
method (PM), based on analytic definitions of the DTW, to
allow analytical computation of its derivatives. Three an-
alytic forms, based of combination of sigmoidal (S), Gaus-
sian (G) or exponentials (E) functions, were considered.

A set of simulated ECGs were generated using a forward
ECG model (Matlab version of ECGSIM). SHVR was var-
ied from 5 to 40 ms (5 ms-steps). To simulate real record-
ings, noise available from the MIT-BIH Noise Stress Test
Database was added with different peak-to-peak ampli-
tudes (30, 60, 120 and 180µV). The use of PM allowed the
inclusion of a larger number of derivatives in the model
and reduced the difference between actual and estimated
T-waves, especially for larger SHVR. This reduction was
more pronounced for model S and G. However, the model
E resulted in a lower estimation bias of V-index with re-
spect to the actual SHVR.

1. Introduction

Spatial heterogeneity of ventricular repolarization
(SHVR) is a property of the human heart, due to the elec-
trophysiological heterogeneity in action potential repolar-
ization times in different regions of the ventricles, and it is
responsible for the genesis of the T-wave on the ECG. The
clinical interest in studying the SHVR is due to the fact that
its pathological increase could bring to the onset of cardiac
arrhythmia, some of them potentially life-threatening (e.g.
ventricular fibrillation) [1, 2]. There has thus been a grow-
ing interest in finding new metrics for estimating SHVR,
non-invasively, from the ECG [3, 4]. In this perspective,
we recently introduced the V-index [5], a metric based on

a biophysical model of the ECG, according to which the
T-waves on the different leads derive from a projection of
a main waveform, called Dominant T-Wave (DTW), and
its derivatives:

Ψ = w1Td +w2Ṫd + . . . . (1)

where Ψ is a [LxN ] matrix containing the N T-wave sam-
ples on L different leads, Td is the vector containing the
DTW, Ṫ the DTW first derivative and w1 and w2 are
[L × 1] vector of lead factors, one for each lead. The
DTW has a fundamental electrophisological interpretation
being the first derivative of the average shape of the repo-
larization part of the Transmembrane potential (TMP) of
myocites.

The dots in equation (1) refer to the fact that the approx-
imation of ψ could be improved through the use of higher
order derivatives of the DTW, weighted by the correspond-
ing lead factors. Specifically, the V-index estimates the
dispersion of ventricular repolarization, sϑ, through the ra-
tio of the standard deviations of the lead factors measured
across successive beats on the i-th lead:

Vi =
std [w2(i)]
std [w1(i)]

≈ sϑ. (2)

The algorithm for estimating the lead factors is based
on a minimization of the difference between the potential
measured on the ECG, ψ(t), and its estimate by equation
(1), which requires the computation of the DTW and its
derivatives. The approach described in [5] is based on a
numerical calculation of these quantities: despite simula-
tions showed a linear increase of the V-index with increas-
ing SHVR, it was also demonstrated that a bias in the esti-
mation of the heterogeneity was introduced.

The aim of this article is to introduce some analytic ap-
proximations of the DTW and of its derivatives, in analogy
to [6]: this approach was developed to investigate whether
it was possible to improve the estimate of the lead factors
(and thus of the V-index), based on the assumption that
this approach could be more resilient to the noise present
in real ECGs. Noise in fact dramatically affects the numer-
ical estimate of the DTW derivatives.
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2. Method

2.1. Analytical models of DTW

We consider three analytical models of the DTW. They
are based on different functions, namely sigmoidal, Gaus-
sian or exponential functions as described in the following.

2.1.1. Model S: sigmoidal function

This model employes a sigmoidal (S) description of
DTW according to the T–wave model introduced by [6].
It is based on the following expression

Td(t) = a
[
b+ Lα1 (t− Tr)L(−α2)(t− Tr)

]
(3)

where Tr is the average repolarization time across ventricle
and the Lα’s are two sigmoidal functions, namely

Lα =
1

1 + e−αt
(4)

where α1 and α2 are proportional to the maximal slopes
(positive and negative, respectively) of the DTW.

2.1.2. Model G: bi-Gaussian function

The DTW is modeled by two Gaussian functions ac-
cording to [7]

Td(t) =

Be
(t−Tr)2

2σ1 t < Tr

Be
(t−Tr)2

2σ2 t > Tr

(5)

whereB is the maximum amplitude (either positive or neg-
ative) of the DTW and were σ1 and σ2 control the width of
the early and late part of the DTW.

2.1.3. Model E: exponential function

Differently from the previous ones, this model describes
the repolarization part of the TMP according to the formu-
lation employed in et al. [8]

TMP (t) = K2

[
(1−K3)eK4t +K3

]
e−K5t

1 + eK6(t−K7)
(6)

where the K’s are the coefficient of the model. The DTW
is obtained as the first derivative of equation (6).

2.2. Data analysis and DTW computation

The computation of DTW, its derivative and the asso-
ciated lead factors are obtained by minimization of the
Frobenius norm of the difference between the ECG signal
and its approximation by DTWs

ε =
∥∥∥Ψ− Ψ̂

∥∥∥
F

=
∥∥∥Ψ−w1Td −w2Ṫd − . . .

∥∥∥
F
. (7)

The way the minimization is realized varies if the analytic
or numerical form of DTW are employed.

2.2.1. Numerical approach

The algorithm is an extension of the one we previously
introduced in the appendix of [5] and it takes into account
an higher number of derivatives. Basically, when up to the
second derivative of DTW is considered, it can be shown
that the DTW which minimizes equation (7) satisfies

Td(j)[‖w1‖2 − 4w1w3/(∆t)2+

2‖w2‖2/(∆t)2 + 6‖w2‖2/(∆t)2]+

[Td(j + 1) + Td(j − 1)]
[
2w1w3/(∆t)2 − |w2‖2/(∆t)2

]
− 4‖w3‖2/(∆t)4+ (8)

[Td(j + 2) + Td(j − 2)] ‖w3‖2/(∆t)4 =
L∑
i=1

{Ψi,jw1(i)− [Ψi,j+1 −Ψi,j−1]w2(i)/(2∆t)−

[Ψi,j+1 − 2Ψi,j + Ψi,j−1]w2(i)/(∆t)2
}

where ∆t is the inverse of the sampling rate, while the
lead factors are estimated by solving the linear system in-
troduced in [6] and expressed by the equation:

W = ΨUT(UUT )−1 (9)

where the rows of U contain the DTW and its derivatives
up to the desired order, while the columns of W are the
lead factors. The identification is performed by iteration:
the estimate of the lead factors is obtained by solving (9)
which are inserted into (8) to obtain DTW, whose deriva-
tives are then computed numerically. The procedure is iter-
ated until the desired convergence is reached: in this paper
when the Frobenius norm is below an opportune thresh-
old. The initial estimate of DTW was obtained by Singular
Value Decomposition (SVD) [9].

Although the above procedure can be extended to any
number of DTW derivative, the high–sensitivity of the
computed derivative to noise, makes the use of third DTW
derivative (or higher) unpractical.

2.2.2. Analytic models

Also in the parametric approach, the estimation is per-
formed by an iterative method. After having initialized the
estimate of DTW by SVD, the approximation is fitted by
the desired model function (S, G or E) and then the deriva-
tive analytically computed.

After DTW initialization, the lead factor are estimated
by solving the linear system previously introduced in
Equation (9). The estimated lead factors are inserted
in equation (7) and the parameter of the parametric
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forms adjusted using a non–linear optimization procedure
(Levemberg–Marquard) to minimize ε. The procedure is
iterated between (9) and (7) until the desired convergence
(or a maximum number of iteration) is reached.

2.3. Simulated data

Simulated ECGs were obtained using Matlab (The
MathWorks, Natick, MA) through the re-implementation
of the forward ECG model of ECGSIM [10]. In details, the
heart surface is discretized in 257 nodes, in each of which
the myocytes are lumped together and share the same TMP.
Spatial repolarization heterogeneity across nodes was sim-
ulated at different extent ranging from 5 to 40 ms (5 ms-
steps). From the TMP, simulated ECG were obtained
through the forward transfer matrix A of ECGSIM (ver-
sion 1.3). To simulate real recordings, noise available
from the MIT-BIH Noise Stress Test Database was added
with different peak-to-peak amplitudes (30, 60, 120 and
180µV).

3. Results

The simulations were planned to compare the perfor-
mance of the three parametric forms of DTW with the nu-
merical approach. Two aspects are mainly investigated: i)
the minimization of equation (7), i.e. the capability to fit
the ECG for different SHVR; ii) the bias in the estimation
of SHVR by the V-index in respect to the one observed
with numerical approach.

Figure 1 shows the trend of Frobenius norm of ε as func-
tion of the SHVR values. A common trend is observed
for both the numerical and the parametric methods: the
norm increases for increasing values of SHVR. Two ob-
servations can explain this behavior: the first one is that
the validity of the approximation in equation (1) does to
not necessarily hold when SHVR increases and higher and
higher order derivatives should be included. The second
one is that, when SHVR increases, a concomitant increase
in the T–wave amplitude is observable and thus the abso-
lute error increases.

The advantages of including a larger number of DTW
derivatives in the approximation is well documented by
comparison of Figure 1(a) and Figure 1(b), which evidence
a drop in the value of the norm when three DTW deriva-
tives are included. Such reduction is more pronounced
by model S and model G and is achievable by paramet-
ric methods only. In fact, the numerical method could not
reach convergence when, at higher SHVR, more than two
derivatives are included in the model

Figure 2 shows the performance of parametric methods
in the computation of V-index and thus on the estimation
of SHVR. In general, the performance of the parametric
methods are similar to those of the numerical approach
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Figure 1. Comparison between the numerical method and
the parametric models in the minimization of the Frobe-
nius norm of equation (7). Results obtained using (a) the
first DTW derivative only and (b) three DTW derivatives.
The black line is repeated in graph (b) for the sake of com-
parison.

(data not shown), with the exception of model E which
showed a lower bias (the curve is closer to black line, rep-
resenting the true SHVR values).

Concerning the robustness to noise, when SNR is very
low, the fitting of the parametric forms becomes more dif-
ficult, especially for lower SHR values. In general the per-
formance of the parametric methods was better when three
derivatives where used in the approximation of the surface
potential Ψ. Figure 3 shows the estimated V-index using
model E at various levels of noise and shows the robustness
of the approach to the added noise. The performances of
each parametric method are summarized in Table 1. Four
main issues are considered: the number of DTW deriva-
tives, used in the approximation, which provides the best

469



Models DTW Noise Bias Norm
deriv. Robustness

S 3 Good Comparable Lower
G 3 Very good Comparable Lower
E 3 Good Slightly Lower Comparable

Table 1. Comparison among the analytic models.
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Figure 2. Comparison between the V-index computed
with the numerical method and with the model E using
three DTW derivatives.
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Figure 3. V-index computed for increasing levels of added
noise using three DTW derivatives for the model E.

results; the robustness to noise; the bias in the V-index es-
timation; and finally the capacity of minimizing the Frobe-
nius norm. In Table 1 the latter two columns are expressed
as comparison with the numerical method.

4. Conclusions

The use of parametric DTW allowed the inclusion of
a larger number of derivatives in the model and reduced

the difference between actual and estimated T–waves. This
reduction was more pronounced for model S and model G.
However, the model E resulted in a lower estimation bias
of V-index with respect to the actual SHVR. Finally all the
three considered parametric forms proved resistant to noise
addition, being model G the most robust.
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