
Computational Mesh as a Descriptor of Left Ventricular Shape for  
Clinical Diagnosis 

Pablo Lamata1,2, Merzaka Lazdam3, Anna Ashcroft3, Adam J Lewandowski3, Paul Leeson3, Nic Smith1  

1Dept. Biomedical Engineering, King’s College of London, London, UK 
2Dept. Computer Science, University of Oxford, Oxford, UK 

3Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine,  
Radcliffe Department of Medicine, University of Oxford, Oxford, UK 

Abstract 

Shape and size of the left ventricle are cardiac 
biomarkers used in clinical routine practice. They are 
typically assessed by partial metrics including volume, 
length, diameter or wall thickness. The aim of this work is 
to illustrate the potential of an alternative shape analysis 
methodology based on a comprehensive description of the 
anatomy using a computational atlas. 40 cardiovascular 
magnetic resonance scans of young women defined the 
cohort data set. A stack of 7 to 8 slices from end diastolic 
frames of dynamic MRI studies were analysed by manual 
segmentation and automatic personalization of high 
order computational meshes. The most significant modes 
of variation of shape of this population were identified by 
principal component analysis. Statistical significant 
differences in shape were found in women with higher 
cardiovascular risk profiles (P<0.05, Hotelling T2 test). 
The analysis revealed differences in the position of the 
apex in the left to right direction, which had not been 
captured by standard clinical parameters. These results 
show computational statistical atlases may offer the 
potential to improve stratification of cardiac diseases. 

1. Introduction

Characterization of the shape and size of the left 
ventricle (LV) is a relevant diagnostic procedure [1,2]. 
Cardiac remodelling manifests clinically as changes in 
size, shape and function of the heart (mainly LV) as a 
result from cardiac load or injury [3]. Main causes are 
acute myocardial infarction, factors that result in 
increased pressure or volume overload, chronic 
hypertension, congenital heart disease with intracardiac 
shunting, valvular heart disease, and heart failure.  

Geometrical characteristics of the heart including 
diameter, wall thickness or blood pool volume are widely 
applied biomarkers for the staging and characterization of 

cardiac diseases. More advanced metrics are the 
sphericity index, major to minor axis ratio, or local 
curvature [4]. These metrics are nevertheless a limited 
characterization of the variability that the 3D geometry of 
the heart can manifest, and, as such, are unable to capture 
regional changes in a comprehensive manner, or to 
represent the relative position of anatomical landmarks 
such as valve planes or the apex. 

Cardiac anatomical shape can be represented by a 
computational mesh, a description of a geometrical 
domain by a set of variables or degrees of freedom. Using 
this approach, anatomical variations can be characterised 
by means of a computational atlas, a statistical 
representation of anatomical variability [5]. Despite their 
successful application for the automatic segmentation of 
ventricular anatomy [5,6], cardiac atlases have, to date, 
made a limited clinical impact, with only a small number 
of studies using atlases to compare populations of 
subjects [7,8]. The development and clinical application 
of cardiac atlases is an active research field, and the 
Cardiac Atlas Project [9] is one of the main international 
efforts in this field.  

This work presents the methodology of shape analysis 
using computational meshes of high order interpolation. 
Three groups of women with different levels of 
preeclampsia are compared, and differences were found 
in subjects with higher cardiovascular risk profiles.  

2. Material and methods

The anatomy of 40 cases is captured by Magnetic 
Resonance Imaging (MRI), manually segmented, codified 
by the degrees of freedom of a computational mesh, and 
statistically compared by relevant clinical groups. 

2.1. Cohort and data acquisition 

The study was based on analysis of cardiovascular 
magnetic resonance images acquired as part of a follow 

ISSN 2325-8861  Computing in Cardiology 2013; 40:571-574.571



up study of women, discharged from the Oxford 
Maternity Unit between 1998 and 2003. The three clinical 
groups were defined by their history of hypertension 
during pregnancy as either early onset preeclampsia 
before 34 weeks gestation (n=12, group 3), late-onset 
preeclampsia (n=15, group 2), or uncomplicated 
pregnancy (n=13, group 1). All studies were approved by 
the Oxfordshire Research Ethics Committee, and 
participants provided signed informed consent or assent 
in accordance with the Declaration of Helsinki. 

Images were acquired by a 1.5-T Siemens Sonata 
scanner. Optimized left ventricular horizontal long-axis 
cine sequences were obtained with standardized basal 
slice alignment with a 7-mm slice thickness and 3-mm 
interslice gap. Imaging was retrospectively ECG-gated 
with a precordial 3-lead ECG and acquired during end-
expiration breath holding. Image acquisition parameters 
for the steady-state free precession images were: echo 
time 1.1ms; repetition time 2.6ms; and flip angle 60°. 

2.2. Ventricular shape description by 
mesh fitting 

End diastolic frame from each cine sequence was 
segmented using Argus (Siemens Medical Solutions, 
Germany). LV short-axis epicardial and endocardial 
borders were manually contoured from the whole stack of 
7 to 8 slices. Location of the right ventricle (RV) was also 
manually drawn by a small circle at the most basal slice. 

High order interpolation meshes were fitted to the 
segmented anatomy using an image registration and 
variational mesh warping technique [10]. As a result, 
each anatomical case is described with a total of 3456 
nodal variables (or degrees of freedom). The location of 
the right ventricle was used to align the ellipsoidal shapes 
of the left ventricle, breaking the symmetry of revolution 
in the circumferential direction.  

An example of this process is shown in Figure 1. 

a. b. c.
Figure 1: Shape description of the LV by computational 
meshes. a. Manual segmentation - note the small circle 
indicating the location of the RV. b. Isosurface of the 
manual binary mask of the LV from 8 slices. c. Resulting 
mesh (white semi-transparent) fitted to 8 slices of points, 
which are coloured by the distance between the contours 
defined in a. to the mesh (coded from 0mm-blue to 5mm-
red). 

2.3. Shape comparison  

Principal component analysis (PCA) was undertaken to 
identify the main modes of variation of the ventricular 
shape. This approach enabled the concentration of the 
variability of shape, and the reduction of the parametric 
space for comparisons from 3456 to a small number of 
dimensions (typically 2 to 5).  

Shape statistical comparisons were first done between 
each shape coordinate by Student’s T-test. Since shape is 
in fact described by a vector of several coordinates (most 
significant ones are the first ones), shape coordinates are 
aggregated in a second statistical test, comparing not two 
distributions of scalar values, but two distributions of 
vectors by a Hotelling T2 test that evaluates whether two 
populations of vectors have the same average value. 
Grouped shape coefficients are compared in a gradual 
fashion, starting by grouping the two most significant 
modes of anatomical variation (student’s T-test).  

3. Results

Meshes were automatically fitted to the 40 cases, 
reaching an average residual error of 1.56mm. The first 
modes of variation of shape are illustrated in Figure 2. 

The average shape of the control group was quite 
similar to the other two, as seen in Figure 4, and the 
individual axes of variability were not statistically 
different in each pair of comparisons (Student T test, 
results not reported). Coordinates 1, 2, 7, 10 and 14 were 
close to the 0.05 threshold in this comparison.  

Statistical significance, with level 0.05, is found by 
grouping the two first shape coordinates in the 
comparison between groups 1 and 2. A visual inspection 
of the parameter space of these two coordinates is shown 
in Figure 5. No other significance is found in any other 
comparison (see Table 1) but with the addition of 
coordinate 14 (this small improvement is interpreted as a 
random effect since the 14th mode of shape variation 
represents nominal changes). It is checked that the 
statistical test is correctly applied by confirming that the 
covariance matrices are not significantly different 
(P=0.31), so the homoskedasticity was demonstrated. 

Coordinates 1 vs 2 1 vs 3 1 vs. 
2&3 

1&2 vs. 
3 

1, 2 0.0425 0.3031 0.0906 0.8005 
1, 2, 7 0.0596 0.3338 0.0955 0.8975 
1, 2, 10 0.0668 0.0520 0.0655 0.1230 
1, 2, 14 0.0139 0.4038 0.0746 0.8089 
Table 1: P-values of the most relevant designs of grouped 
coordinates in a Hotelling T2 test. Significant values are 
highlighted in bold.  
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Figure 2. First three modes of variation of the PCA of the 
shape of 40 left ventricles.. Mode 1 mainly captures 
changes in length, mode 2 changes in relative position of 
the apex with respect to the base, and mode 3 changes in 
diameter. They are responsible for 29%, 21%, and 17% of 
the variance respectively. 

Figure 3. Distribution of the first two shape coordinates 
of all 40 cases analysed. Note that the coordinates of the 
first mode are distributed like the addition of two 
Gaussians for the three groups. 

Group 1: control Group 1vs2 

Group 2: late pet Group 1vs3 

Group 3: early pet Group 2vs3 

Figure 4. Average shape of each group, and comparison 
between them. 

Figure 5. Distribution of the first two shape coordinates 
of all 40 cases analysed. The blue (group 1, control) is 
different from group 2 (green, late pet) – P=0.0425, but 
not from group 3 (red, early pet). 
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4. Discussion

Differences in shape between groups with different 
cardiovascular risk were found. The analysis revealed 
differences in the position of the apex in the left to right 
direction, which could not be captured by standard 
clinical parameters. These results show computational 
statistical atlases may offer potential to improve 
stratification of cardiac diseases. 

High order interpolation computational meshes were 
used in this study to codify shape. These meshes are 
smooth and continuous, what brings a fundamental 
advantage: an implicit spatial regularization of shape that 
reduces acquisition artefacts or segmentation errors. 
These meshes are also compact, i.e. they require a much 
smaller number of nodal variables to codify shape 
compared to linear meshes. Another strength of our 
methodology is the capability to reconstruct the apex of 
the ventricle from a set of short axis slices. 

Our shape analysis methodology has already been able 
to find shape differences between young adults of 
different gestational ages, where statistical significance 
was found in the individual comparison of the first six 
modes of variation in a cohort of 234 cases (P<0.01) [8]. 
The differences in shape of the present study were thus 
much smaller, and could be partially attributed to the 
smaller sample size (40 cases). Results also revealed a 
mixture of two Gaussian distributions in the first 
coordinate value (see Figure 3), suggesting the existence 
of two sub-groups inside the clinical groups.   

We acknowledge a number of limitations in our 
approach. The use of short axis cine MRI data cuts the 
anatomy at the ventricular base, although this issue can be 
mitigated with the incorporation of long axis slices [7]. 
The stack of cine MRI slices was not corrected for patient 
movement, and shifts in between slices can be present. 
The degrees of freedom of our choice of high order 
interpolation mesh were not homogeneous (we used cubic 
Hermite interpolation, with both nodal values and 
derivatives), what makes the relative importance of vector 
coordinates unbalanced for a PCA analysis [5]. Future 
work will address these limitations together with the need 
of more meaningful modes of variation of shape, a 
common problem of PCA that has been previously 
addressed in the study of deformation [11]. 

To conclude, the shape of the left ventricle can be 
effectively codified and compared by means of 
computational meshes with high order interpolation. 
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